- -

Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality

Show full item record

Barrile, V.; Fotia, A.; Bilotta, G.; De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review. 10(20):40-51. https://doi.org/10.4995/var.2019.10361

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/116459

Files in this item

Item Metadata

Title: Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality
Secondary Title: Integración de metodologías geomáticas y creación de una aplicación patrimonial usando realidad aumentada
Author: Barrile, Vincenzo Fotia, Antonino Bilotta, Giuliana De Carlo, Domenico
Issued date:
Abstract:
[EN] 3D modelling of archaeological and historical structures is the new frontier in the field of conservation science. Similarly, the identification of buried finds, which enhances their multimedia diffusion and restoration, ...[+]


[ES] El modelado 3D de estructuras arqueológicas e históricas es el nuevo hito en el campo de la ciencia de la conservación. De manera similar, la identificación de hallazgos enterrados ha ganado relevancia, ya que mejora ...[+]
Subjects: Láser escáner , Modelado 3D , Georradar (GPR) , Estructuras arqueológicas e históricas , Realidad Aumentada (RA) , Laser Scanner , 3D modelling , Ground Penetrating Radar (GPR) , Archaeological and historical structures , Augmented reality (AR)
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Virtual Archaeology Review. (eissn: 1989-9947 )
DOI: 10.4995/var.2019.10361
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/var.2019.10361
Type: Artículo

References

Akca, D., & Gruen, A. (2007). Generalized least squares multiple 3D surface matching. ISPRS WS Laser Scanning 2007, 36(3), 1-7. https://doi.org/10.3929/ethz-a-005748609

Annan, A. P., & Cosway, S. W. (1994). GPR frequency selection. In Proceeding of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 747-760.

Bae, H., Golparvar-Fard, M., & White, J. (2013). High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Visualization in Engineering 1(1), 1-13. https://doi.org/10.1186/2213-7459-1-3 [+]
Akca, D., & Gruen, A. (2007). Generalized least squares multiple 3D surface matching. ISPRS WS Laser Scanning 2007, 36(3), 1-7. https://doi.org/10.3929/ethz-a-005748609

Annan, A. P., & Cosway, S. W. (1994). GPR frequency selection. In Proceeding of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 747-760.

Bae, H., Golparvar-Fard, M., & White, J. (2013). High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Visualization in Engineering 1(1), 1-13. https://doi.org/10.1186/2213-7459-1-3

Ballabeni, A., Apollonio, F. I., Gaiani, M., & Remondino, F. (2015). Advances in image pre-processing to improve automated 3D reconstruction. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Archives, XL-5/W4, 315-323. https://doi.org/10.5194/isprsarchives-XL-5-W4-315-2015

Barazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. Photogrammetric Record, 25(132), 356-381. https://doi.org/10.1111/j.1477-9730.2010.00599.x

Barrile, V., & Bilotta, G. (2014). Self-localization by laser scanner and GPS in automated surveys. Computational Problems in Engineering. Lecture Notes in Electrical Engineering, Springer, 307, 293-313.

Barrile, V., Fotia, A. & Bilotta, G. (2018). Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5

Barrile, V., Nunnari, A., & Ponterio, R. C. (2016). Laser scanner for the Architectural and Cultural Heritage and Applications for the Dissemination of the 3D Model. Procedia: Social & Behavioral Sciences, 223, 555-560. https://doi.org/10.1016/j.sbspro.2016.05.313.

Barrile, V., Meduri, G. M., & Bilotta, G. (2011). Laser scanner technology for complex surveying structures. WSEAS Transactions on Signal Processing, 7, 65-74.

Brumana, R., Oreni, D., Caspani, S., & Previtali, M. (2018). Virtual museums and built environment: narratives and immersive experience via multi-temporal geodata hub. Virtual Archaeology Review, 19(9), 34-49,. https://doi.org/10.4995/var.2018.9918.

Conyers, L. B., & Goodman, D. (1997). Ground-Penetrating Radar - An Introduction for Archaeologists. Walnut Creek, CA: AltaMira Press, A Division of Sage Publications, Inc.

Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial data management of temporal map series for cultural and environmental heritage. International Journal of Spatial Data Infrastructures Research, 6, 1-31. https://doi.org/10.2902/1725-0463.2011.06.art5

Davis, J. L., & Annan, A. P. (1989). Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x

Kraus, K. (2007). Photogrammetry-Geometry from images and laser scans. Berlin: Walter de Gruyter.

Goodman, D., Nishimura, Y., & Tobita, K. (1994). GPRSIM forward modeling software and time slices in ground penetrating radar surveys. In Proceedings of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 31-43.

Grandjean, G., & Gourry, J. C. (1996): GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). Journal of Applied Geophysics, 36, 19-30. https://doi.org/10.1016/S0926-9851(96)00029-8

Grasmueck, M. (1996): 3D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61 (4), 1050-1064.

Liu, X., Serhir, M., Kameni, A., Lambert, M., & Pichon, L. (2017). Ground penetrating radar data imaging via Kirchhoff migration method. In Applied Computational Electromagnetics Society (ACES 2017), Mar 2017, Florence, Italy,1-2. https://doi.org/10.23919/ROPACES.2017.7916395

Merino, A., Márquez, C., & González, R. (2018). APP 3D: sculpture cycle of the Torreparedones forum (Baena, Córdoba). Virtual Archaeology Review, 19(9), 89-101. https://doi.org/10.4995/var.2018.9424

Monti, C., Brumana, R., Achille, C., & Fregonese, L. (2004). Per un moderno rilievo della basilica di San Lorenzo tra opera, progetto e trasformazioni. Milan: Silvana Ed.

Ortega-Ramirez, J., Bano, M., Villa-Alvarado, L. A., Junco-Sanchez, R., Pifia-Cetina, M., Estrada-Apatiza, S., Vera-Sanchez, J. C., & Hernández-López, A. (2018). Ground penetrating radar investigation of an ancient Spanish fortress: The Fort of San Diego, Acapulco, Mexico. In: 17th International Conference on Ground Penetrating Radar (GPR) 18-21 June 2018, 1-4. https://doi.org/10.1109/ICGPR.2018.8441550

Persico, R., & Sato, M. (2017). Ground-Penetrating Radar: Technologies and Data Processing Issues for Applications in the Field of Cultural Heritage. In: N. Masini, & F. Soldovieri (Eds), Sensing the Past. Geotechnologies and the Environment (pp. 175-202), Cham: Springer. https://doi.org/10.1007/978-3-319-50518-3_9

Rinaudo, F., Bornaz, L., & Ardissone, P. (2007). 3D high accuracy survey and modelling for Cultural Heritage Documentation and Restoration. Vast 2007-future technologies to empower heritage professionals, November 26-29, 2007, Brighton, UK, Archaeolingua Hun, 19-23.

Sigurdsson, T., & Overgaard, T. (1998). Application of GPR for 3D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics, 40, 29-36.

[-]

This item appears in the following Collection(s)

Show full item record