- -

Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrile, Vincenzo es_ES
dc.contributor.author Fotia, Antonino es_ES
dc.contributor.author Bilotta, Giuliana es_ES
dc.contributor.author De Carlo, Domenico es_ES
dc.date.accessioned 2019-02-06T08:22:11Z
dc.date.available 2019-02-06T08:22:11Z
dc.date.issued 2019-01-28
dc.identifier.uri http://hdl.handle.net/10251/116459
dc.description.abstract [EN] 3D modelling of archaeological and historical structures is the new frontier in the field of conservation science. Similarly, the identification of buried finds, which enhances their multimedia diffusion and restoration, has gained relevance. As such sites often have a high level of structural complexity and complicated territorial geometries, accuracy in the creation of 3D models and the use of sophisticated algorithms for georadar data analysis are crucial. This research is the first step in a larger project aimed at reclaiming the ancient villages located in the Greek area of southern Italy. The present study focuses on the restoration of the village of Africo (RC), a village hit by past flooding. The survey began with a laser scan of the church of St. Nicholas, using both the Faro Focus3D and the Riegl LMS-Z420i laser scanner. At the same time, georadar analyses were carried out in order to pinpoint any buried objects. In the processing phase, our own MATLAB algorithms were used for both laser scanner and georadar datasets and the results compared with those obtained from the scanners’ respective proprietary software. We are working to develop a tourism app in both augmented and virtual reality environments, in order to disseminate and improve access to cultural heritage. The app allows users to see the 3D model and simultaneously access information on the site integrated from a variety of repositories. The aim is to create an immersive visit, in this case, to the church of St. Nicholas.Highlights:Use of different algorithms for registration of terrestrial laser scans and analysis of the data obtained.3D acquisition, processing and restitution methodology from georadar data.Implementation of a tourist app in both virtual and augmented reality by integrating geomatics methodologies. es_ES
dc.description.abstract [ES] El modelado 3D de estructuras arqueológicas e históricas es el nuevo hito en el campo de la ciencia de la conservación. De manera similar, la identificación de hallazgos enterrados ha ganado relevancia, ya que mejora la difusión multimedia y la restauración. Como a menudo los sitios en estudio tienen un alto nivel de complejidad estructural y geometrías territoriales complicadas, la precisión en la creación de modelos 3D y el uso de algoritmos sofisticados para el análisis de datos georradar son puntos cruciales. Esta investigación es el primer paso en un proyecto más grande destinado a recuperar las aldeas antiguas de la zona griega al sur de Calabria. El presente estudio se centra en la restauración de la aldea Africo (RC), que fue golpeada en el pasado por una inundación. El trabajo comenzó con el análisis de los datos láser de la iglesia de San Nicolás en el centro del pueblo, utilizando el láser escáner Faro Focus3D y el Riegl LMS-Z420i. Paralelamente, se llevaron a cabo análisis georradar para resaltar cualquier objeto enterrado. En la fase de procesamiento, se utilizaron nuestros algoritmos desarrollados en MATLAB para ambos conjuntos de datos, escáner láser y georradar. Los resultados se compararon con los obtenidos con el software propietario respectivo. Estamos trabajando en el desarrollo de una aplicación turística en entornos de realidad virtual y aumentada que permita difundir y apreciar el patrimonio cultural. Por consiguiente, la aplicación mencionada se ha implementado de manera que permita al usuario ver el modelo 3D y la información en realidad aumentada. Con la realidad aumentada, de hecho, intentamos que haya más información disponible de otros repositorios integrándolos con monumentos, bellezas naturales, rincones característicos, creando así las condiciones para una visita inmersiva, en el caso aquí propuesto la iglesia de San Nicolás. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Virtual Archaeology Review
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Láser escáner es_ES
dc.subject Modelado 3D es_ES
dc.subject Georradar (GPR) es_ES
dc.subject Estructuras arqueológicas e históricas es_ES
dc.subject Realidad aumentada (RA) es_ES
dc.subject Laser Scanner es_ES
dc.subject 3D modelling es_ES
dc.subject Ground Penetrating Radar (GPR) es_ES
dc.subject Archaeological and historical structures es_ES
dc.subject Augmented reality (AR) es_ES
dc.title Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality es_ES
dc.title.alternative Integración de metodologías geomáticas y creación de una aplicación patrimonial usando realidad aumentada es_ES
dc.type Artículo es_ES
dc.date.updated 2019-02-05T13:51:56Z
dc.identifier.doi 10.4995/var.2019.10361
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Barrile, V.; Fotia, A.; Bilotta, G.; De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review. 10(20):40-51. https://doi.org/10.4995/var.2019.10361 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2019.10361 es_ES
dc.description.upvformatpinicio 40 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10
dc.description.issue 20
dc.identifier.eissn 1989-9947
dc.description.references Akca, D., & Gruen, A. (2007). Generalized least squares multiple 3D surface matching. ISPRS WS Laser Scanning 2007, 36(3), 1-7. https://doi.org/10.3929/ethz-a-005748609 es_ES
dc.description.references Annan, A. P., & Cosway, S. W. (1994). GPR frequency selection. In Proceeding of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 747-760. es_ES
dc.description.references Bae, H., Golparvar-Fard, M., & White, J. (2013). High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Visualization in Engineering 1(1), 1-13. https://doi.org/10.1186/2213-7459-1-3 es_ES
dc.description.references Ballabeni, A., Apollonio, F. I., Gaiani, M., & Remondino, F. (2015). Advances in image pre-processing to improve automated 3D reconstruction. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Archives, XL-5/W4, 315-323. https://doi.org/10.5194/isprsarchives-XL-5-W4-315-2015 es_ES
dc.description.references Barazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. Photogrammetric Record, 25(132), 356-381. https://doi.org/10.1111/j.1477-9730.2010.00599.x es_ES
dc.description.references Barrile, V., & Bilotta, G. (2014). Self-localization by laser scanner and GPS in automated surveys. Computational Problems in Engineering. Lecture Notes in Electrical Engineering, Springer, 307, 293-313. es_ES
dc.description.references Barrile, V., Fotia, A. & Bilotta, G. (2018). Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5 es_ES
dc.description.references Barrile, V., Nunnari, A., & Ponterio, R. C. (2016). Laser scanner for the Architectural and Cultural Heritage and Applications for the Dissemination of the 3D Model. Procedia: Social & Behavioral Sciences, 223, 555-560. https://doi.org/10.1016/j.sbspro.2016.05.313. es_ES
dc.description.references Barrile, V., Meduri, G. M., & Bilotta, G. (2011). Laser scanner technology for complex surveying structures. WSEAS Transactions on Signal Processing, 7, 65-74. es_ES
dc.description.references Brumana, R., Oreni, D., Caspani, S., & Previtali, M. (2018). Virtual museums and built environment: narratives and immersive experience via multi-temporal geodata hub. Virtual Archaeology Review, 19(9), 34-49,. https://doi.org/10.4995/var.2018.9918. es_ES
dc.description.references Conyers, L. B., & Goodman, D. (1997). Ground-Penetrating Radar - An Introduction for Archaeologists. Walnut Creek, CA: AltaMira Press, A Division of Sage Publications, Inc. es_ES
dc.description.references Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial data management of temporal map series for cultural and environmental heritage. International Journal of Spatial Data Infrastructures Research, 6, 1-31. https://doi.org/10.2902/1725-0463.2011.06.art5 es_ES
dc.description.references Davis, J. L., & Annan, A. P. (1989). Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x es_ES
dc.description.references Kraus, K. (2007). Photogrammetry-Geometry from images and laser scans. Berlin: Walter de Gruyter. es_ES
dc.description.references Goodman, D., Nishimura, Y., & Tobita, K. (1994). GPRSIM forward modeling software and time slices in ground penetrating radar surveys. In Proceedings of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 31-43. es_ES
dc.description.references Grandjean, G., & Gourry, J. C. (1996): GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). Journal of Applied Geophysics, 36, 19-30. https://doi.org/10.1016/S0926-9851(96)00029-8 es_ES
dc.description.references Grasmueck, M. (1996): 3D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61 (4), 1050-1064. es_ES
dc.description.references Liu, X., Serhir, M., Kameni, A., Lambert, M., & Pichon, L. (2017). Ground penetrating radar data imaging via Kirchhoff migration method. In Applied Computational Electromagnetics Society (ACES 2017), Mar 2017, Florence, Italy,1-2. https://doi.org/10.23919/ROPACES.2017.7916395 es_ES
dc.description.references Merino, A., Márquez, C., & González, R. (2018). APP 3D: sculpture cycle of the Torreparedones forum (Baena, Córdoba). Virtual Archaeology Review, 19(9), 89-101. https://doi.org/10.4995/var.2018.9424 es_ES
dc.description.references Monti, C., Brumana, R., Achille, C., & Fregonese, L. (2004). Per un moderno rilievo della basilica di San Lorenzo tra opera, progetto e trasformazioni. Milan: Silvana Ed. es_ES
dc.description.references Ortega-Ramirez, J., Bano, M., Villa-Alvarado, L. A., Junco-Sanchez, R., Pifia-Cetina, M., Estrada-Apatiza, S., Vera-Sanchez, J. C., & Hernández-López, A. (2018). Ground penetrating radar investigation of an ancient Spanish fortress: The Fort of San Diego, Acapulco, Mexico. In: 17th International Conference on Ground Penetrating Radar (GPR) 18-21 June 2018, 1-4. https://doi.org/10.1109/ICGPR.2018.8441550 es_ES
dc.description.references Persico, R., & Sato, M. (2017). Ground-Penetrating Radar: Technologies and Data Processing Issues for Applications in the Field of Cultural Heritage. In: N. Masini, & F. Soldovieri (Eds), Sensing the Past. Geotechnologies and the Environment (pp. 175-202), Cham: Springer. https://doi.org/10.1007/978-3-319-50518-3_9 es_ES
dc.description.references Rinaudo, F., Bornaz, L., & Ardissone, P. (2007). 3D high accuracy survey and modelling for Cultural Heritage Documentation and Restoration. Vast 2007-future technologies to empower heritage professionals, November 26-29, 2007, Brighton, UK, Archaeolingua Hun, 19-23. es_ES
dc.description.references Sigurdsson, T., & Overgaard, T. (1998). Application of GPR for 3D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics, 40, 29-36. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem