- -

Hybrid solar-gas-electric dryer optimization with genetic algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid solar-gas-electric dryer optimization with genetic algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author El Ferouali, H. es_ES
dc.contributor.author Gharafi, M. es_ES
dc.contributor.author Zoukit, A. es_ES
dc.contributor.author Doubabi, S. es_ES
dc.contributor.author Abdenouri, Naji es_ES
dc.date.accessioned 2019-02-13T07:43:00Z
dc.date.available 2019-02-13T07:43:00Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486887
dc.identifier.uri http://hdl.handle.net/10251/116660
dc.description.abstract [EN] To promote the hybrid solar dryers for use even under unfavorable weather and to overcome the intermittance state issue, the energy consumption should be optimized and the response time should be reduced. This work concerns a drying chamber connected to a solar absorber where the air can be heated also by combustion of gas and by electric resistance. To optimize the control parameters, an evolutionary optimization algorithm simulating natural selection was used. It was combined with a predictive model based on the artificial neural networks (ANN) technique and used as a fitness function for the genetic algorithm (GA). The ANN is a learning algorithm that needs training through a large dataset, which was collected using CFD simulation and experimental data. Then a GA was executed in order to optimize two objectives: The energy consumption and the t95% response time in which the drying chamber temperature reaches its set point (60°C). After optimization, a 30% decrease of the t95% response time, and 20% decrease of the energy consumption were obtained. es_ES
dc.description.sponsorship This work was supported by the research institute IRESEN and all of the authors are grateful to the IRESEN for its cooperation es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof IDS 2018. 21st International Drying Symposium Proceedings es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Drying es_ES
dc.subject Dehydration es_ES
dc.subject Dewatering es_ES
dc.subject Emerging technologies es_ES
dc.subject Products quality es_ES
dc.subject Process control es_ES
dc.subject Environmental es_ES
dc.subject Evaporation es_ES
dc.subject Sublimation es_ES
dc.subject Diffusion es_ES
dc.subject Energy es_ES
dc.subject Intensification es_ES
dc.subject Hybrid solar dryer es_ES
dc.subject Artificial neural network es_ES
dc.subject Temperature regulation es_ES
dc.subject Energy consumption es_ES
dc.subject Genetic algorithm es_ES
dc.title Hybrid solar-gas-electric dryer optimization with genetic algorithms es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/IDS2018.2018.7521
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation El Ferouali, H.; Gharafi, M.; Zoukit, A.; Doubabi, S.; Abdenouri, N. (2018). Hybrid solar-gas-electric dryer optimization with genetic algorithms. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 363-370. https://doi.org/10.4995/IDS2018.2018.7521 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 21st International Drying Symposium es_ES
dc.relation.conferencedate Septiembre 11-14, 2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/IDS/ids2018/paper/view/7521 es_ES
dc.description.upvformatpinicio 363 es_ES
dc.description.upvformatpfin 370 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\7521 es_ES
dc.contributor.funder Institut de Recherche en Energie Solaire et Energies Nouvelles, Marruecos


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem