- -

Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment

Show simple item record

Files in this item

dc.contributor.author Mas-Cabo, Javier es_ES
dc.contributor.author Prats-Boluda, Gema es_ES
dc.contributor.author Perales Marín, Alfredo Jose es_ES
dc.contributor.author Garcia-Casado, Javier es_ES
dc.contributor.author Alberola Rubio, José es_ES
dc.contributor.author Ye Lin, Yiyao es_ES
dc.date.accessioned 2019-03-15T21:01:51Z
dc.date.available 2019-03-15T21:01:51Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0140-0118 es_ES
dc.identifier.uri http://hdl.handle.net/10251/118178
dc.description.abstract [EN] As one of the main aims of obstetrics is to be able to detect imminent delivery in patients with threatened preterm labor, the techniques currently used in clinical practice have serious limitations in this respect. The electrohysterogram (EHG) has now emerged as an alternative technique, providing relevant information about labor onset when recorded in controlled checkups without administration of tocolytic drugs. The studies published to date mainly focus on EHG-burst analysis and, to a lesser extent, on whole EHG window analysis. The study described here assessed the ability of EHG signals to discriminate imminent labor (<7days) in women with threatened preterm labor undergoing tocolytic therapy, using both EHG-burst and whole EHG window analyses, by calculating temporal, spectral, and non-linear parameters. Only two non-linear EHG-burst parameters and four whole EHG window analysis parameters were able to distinguish the women who delivered <7days from the others, showing that EHG can provide relevant information on the approach of labor, even in women with threatened preterm labor under the effects of tocolytic therapy. The whole EHG window outperformed the EHG-burst analysis and is seen as a step forward in the development of real-time EHG systems able to predict imminent labor in clinical praxis>The ability of EHG recordings to predict imminent labor (<7days) was analyzed in preterm threatened patients undergoing tocolytic therapies by means of EHG-burst and whole EHG window analysis. The non-linear features were found to have better performance than the temporal and spectral parameters in separating women who delivered in less than 7days from those who did not. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//DPI2015-68397-R/ES/ELECTROHISTEROGRAFIA, CONSTRUYENDO PUENTES PARA SU USO CLINICO EN OBSTETRICIA/ es_ES
dc.relation.ispartof Medical & Biological Engineering & Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrohysterogram es_ES
dc.subject Premature labor es_ES
dc.subject Tocolytic therapy es_ES
dc.subject Non-linear analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11517-018-1888-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Mas-Cabo, J.; Prats-Boluda, G.; Perales Marín, AJ.; Garcia-Casado, J.; Alberola Rubio, J.; Ye Lin, Y. (2019). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing. 57:401-411. https://doi.org/10.1007/s11517-018-1888-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11517-018-1888-y es_ES
dc.description.upvformatpinicio 401 es_ES
dc.description.upvformatpfin 411 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.identifier.pmid 30159659
dc.relation.pasarela S\367927 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701 es_ES
dc.description.references Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696 es_ES
dc.description.references Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007 es_ES
dc.description.references Crandon AJ (1979) Maternal anxiety and neonatal wellbeing. J Psychosom Res 23:113–115. https://doi.org/10.1016/0022-3999(79)90015-1 es_ES
dc.description.references Devedeux D, Marque C, Mansour S, Germain G, Duchêne J (1993) Uterine electromyography: a critical review. Am J Obstet Gynecol 169:1636–1653. https://doi.org/10.1016/0002-9378(93)90456-S es_ES
dc.description.references Fele-Žorž G, Kavšek G, Novak-Antolič Ž, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922. https://doi.org/10.1007/s11517-008-0350-y es_ES
dc.description.references Fergus P, Cheung P, Hussain A, al-Jumeily D, Dobbins C, Iram S (2013) Prediction of preterm deliveries from EHG signals using machine learning. PLoS One 8:e77154. https://doi.org/10.1371/journal.pone.0077154 es_ES
dc.description.references Garfield RE, Maner WL (2006) Biophysical methods of prediction and prevention of preterm labor: uterine electromyography and cervical light-induced fluorescence—new obstetrical diagnostic techniques. In: Preterm Birth pp 131–144 es_ES
dc.description.references Garfield RE, Maner WL (2007) Physiology and electrical activity of uterine contractions. Semin Cell Dev Biol 18:289–295. https://doi.org/10.1016/j.semcdb.2007.05.004 es_ES
dc.description.references Garfield RE, Maner WL, MacKay LB et al (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29. https://doi.org/10.1016/j.ajog.2005.01.050 es_ES
dc.description.references Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/S0140-6736(08)60074-4 es_ES
dc.description.references American College of Obstetricians and Gynecologists and Committee on Practice Bulletins— Obstetrics (2012) Practice bulletin no. 127. Obstet Gynecol 119(6):1308–1317. es_ES
dc.description.references Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y (2015) A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern Neonatal Med 28:1367–1374. https://doi.org/10.3109/14767058.2014.954539 es_ES
dc.description.references Hans P, Dewandre P, Brichant JF, Bonhomme V (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94:336–340. https://doi.org/10.1093/bja/aei047 es_ES
dc.description.references Hassan M, Terrien J, Marque C, Karlsson B (2011) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986. https://doi.org/10.1016/j.medengphy.2011.03.010 es_ES
dc.description.references Hassan M, Terrien J, Muszynski C et al (2013) Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166. https://doi.org/10.1109/TBME.2012.2229279 es_ES
dc.description.references Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M (2016) Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng 36:574–583. https://doi.org/10.1016/j.bbe.2016.06.004 es_ES
dc.description.references Lawn JE, Wilczynska-Ketende K, Cousens SN (2006) Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 35:706–718. https://doi.org/10.1093/ije/dyl043 es_ES
dc.description.references Lemancewicz A, Borowska M, Kuć P, Jasińska E, Laudański P, Laudański T, Oczeretko E (2016) Early diagnosis of threatened premature labor by electrohysterographic recordings—the use of digital signal processing. Biocybern Biomed Eng 36:302–307. https://doi.org/10.1016/j.bbe.2015.11.005 es_ES
dc.description.references M L WLM, LR C (2012) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:1–20. https://doi.org/10.1016/j.ajog.2010.09.024.Noninvasive es_ES
dc.description.references Maner WL, Garfield RE (2007) Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann Biomed Eng 35:465–473. https://doi.org/10.1007/s10439-006-9248-8 es_ES
dc.description.references Maner WL, Garfield RE, Maul H, Olson G, Saade G (2003) Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 101:1254–1260. https://doi.org/10.1016/S0029-7844(03)00341-7 es_ES
dc.description.references Marque C, Gondry J (1999) Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng 46:1222–1229 es_ES
dc.description.references Maul H, Maner WL, Olson G, Saade GR, Garfield RE (2004) Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J Matern Fetal Neonatal Med 15:297–301 es_ES
dc.description.references Mischi M, Chen C, Ignatenko T, de Lau H, Ding B, Oei SGG, Rabotti C (2018) Dedicated entropy measures for early assessment of pregnancy progression from single-channel electrohysterography. IEEE Trans Biomed Eng 65:875–884. https://doi.org/10.1109/TBME.2017.2723933 es_ES
dc.description.references Most O, Langer O, Kerner R, Ben David G, Calderon I (2008) Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol 199:378. https://doi.org/10.1016/j.ajog.2008.08.003 es_ES
dc.description.references Petrou S (2005) The economic consequences of preterm birth during the first 10 years of life. BJOG 112:10–15. https://doi.org/10.1111/j.1471-0528.2005.00577.x es_ES
dc.description.references Rabotti C, Sammali F, Kuijsters N, et al (2015) Analysis of uterine activity in nonpregnant women by electrohysterography: a feasibility study. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS pp 5916–5919 es_ES
dc.description.references Schlembach D, Maner WL, Garfield RE, Maul H (2009) Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol 144:2–8. https://doi.org/10.1016/j.ejogrb.2009.02.016 es_ES
dc.description.references Sikora J, Matonia A, Czabański R et al (2011) Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch Perinat Med 17:97–103 es_ES
dc.description.references Vinken MPGC, Rabotti C, Mischi M, van Laar JOEH, Oei SG (2010) Nifedipine-induced changes in the electrohysterogram of preterm contractions: feasibility in clinical practice. Obstet Gynecol Int 2010:325635. https://doi.org/10.1155/2010/325635 es_ES
dc.description.references Vrhovec J, Lebar AM (2012) An uterine electromyographic activity as a measure of labor progression. Appl EMG Clin Sport Med 243–268. doi: https://doi.org/10.5772/25526 es_ES
dc.description.references Vrhovec J, Macek-Lebar A, Rudel D (2007) Evaluating uterine electrohysterogram with entropy. 11th Mediterr Conf Med Biomed Eng Comput 144–147. https://doi.org/10.1007/978-3-540-73044-6_36 es_ES
dc.description.references Ye-Lin Y, Bueno-Barrachina JM, Prats-boluda G, Rodriguez de Sanabria R, Garcia-Casado J (2017) Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement 97:195–202. https://doi.org/10.1016/J.MEASUREMENT.2016.11.009 es_ES
dc.description.references Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Alberola-Rubio J, Perales A (2014) Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Comput Math Methods Med 2014:1–11. https://doi.org/10.1155/2014/470786 es_ES
dc.description.references Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433. https://doi.org/10.1109/10.966601 es_ES


This item appears in the following Collection(s)

Show simple item record