Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701
Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696
Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007
[+]
Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701
Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696
Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007
Crandon AJ (1979) Maternal anxiety and neonatal wellbeing. J Psychosom Res 23:113–115. https://doi.org/10.1016/0022-3999(79)90015-1
Devedeux D, Marque C, Mansour S, Germain G, Duchêne J (1993) Uterine electromyography: a critical review. Am J Obstet Gynecol 169:1636–1653. https://doi.org/10.1016/0002-9378(93)90456-S
Fele-Žorž G, Kavšek G, Novak-Antolič Ž, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922. https://doi.org/10.1007/s11517-008-0350-y
Fergus P, Cheung P, Hussain A, al-Jumeily D, Dobbins C, Iram S (2013) Prediction of preterm deliveries from EHG signals using machine learning. PLoS One 8:e77154. https://doi.org/10.1371/journal.pone.0077154
Garfield RE, Maner WL (2006) Biophysical methods of prediction and prevention of preterm labor: uterine electromyography and cervical light-induced fluorescence—new obstetrical diagnostic techniques. In: Preterm Birth pp 131–144
Garfield RE, Maner WL (2007) Physiology and electrical activity of uterine contractions. Semin Cell Dev Biol 18:289–295. https://doi.org/10.1016/j.semcdb.2007.05.004
Garfield RE, Maner WL, MacKay LB et al (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29. https://doi.org/10.1016/j.ajog.2005.01.050
Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/S0140-6736(08)60074-4
American College of Obstetricians and Gynecologists and Committee on Practice Bulletins— Obstetrics (2012) Practice bulletin no. 127. Obstet Gynecol 119(6):1308–1317.
Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y (2015) A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern Neonatal Med 28:1367–1374. https://doi.org/10.3109/14767058.2014.954539
Hans P, Dewandre P, Brichant JF, Bonhomme V (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94:336–340. https://doi.org/10.1093/bja/aei047
Hassan M, Terrien J, Marque C, Karlsson B (2011) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986. https://doi.org/10.1016/j.medengphy.2011.03.010
Hassan M, Terrien J, Muszynski C et al (2013) Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166. https://doi.org/10.1109/TBME.2012.2229279
Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M (2016) Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng 36:574–583. https://doi.org/10.1016/j.bbe.2016.06.004
Lawn JE, Wilczynska-Ketende K, Cousens SN (2006) Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 35:706–718. https://doi.org/10.1093/ije/dyl043
Lemancewicz A, Borowska M, Kuć P, Jasińska E, Laudański P, Laudański T, Oczeretko E (2016) Early diagnosis of threatened premature labor by electrohysterographic recordings—the use of digital signal processing. Biocybern Biomed Eng 36:302–307. https://doi.org/10.1016/j.bbe.2015.11.005
M L WLM, LR C (2012) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:1–20. https://doi.org/10.1016/j.ajog.2010.09.024.Noninvasive
Maner WL, Garfield RE (2007) Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann Biomed Eng 35:465–473. https://doi.org/10.1007/s10439-006-9248-8
Maner WL, Garfield RE, Maul H, Olson G, Saade G (2003) Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 101:1254–1260. https://doi.org/10.1016/S0029-7844(03)00341-7
Marque C, Gondry J (1999) Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng 46:1222–1229
Maul H, Maner WL, Olson G, Saade GR, Garfield RE (2004) Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J Matern Fetal Neonatal Med 15:297–301
Mischi M, Chen C, Ignatenko T, de Lau H, Ding B, Oei SGG, Rabotti C (2018) Dedicated entropy measures for early assessment of pregnancy progression from single-channel electrohysterography. IEEE Trans Biomed Eng 65:875–884. https://doi.org/10.1109/TBME.2017.2723933
Most O, Langer O, Kerner R, Ben David G, Calderon I (2008) Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol 199:378. https://doi.org/10.1016/j.ajog.2008.08.003
Petrou S (2005) The economic consequences of preterm birth during the first 10 years of life. BJOG 112:10–15. https://doi.org/10.1111/j.1471-0528.2005.00577.x
Rabotti C, Sammali F, Kuijsters N, et al (2015) Analysis of uterine activity in nonpregnant women by electrohysterography: a feasibility study. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS pp 5916–5919
Schlembach D, Maner WL, Garfield RE, Maul H (2009) Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol 144:2–8. https://doi.org/10.1016/j.ejogrb.2009.02.016
Sikora J, Matonia A, Czabański R et al (2011) Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch Perinat Med 17:97–103
Vinken MPGC, Rabotti C, Mischi M, van Laar JOEH, Oei SG (2010) Nifedipine-induced changes in the electrohysterogram of preterm contractions: feasibility in clinical practice. Obstet Gynecol Int 2010:325635. https://doi.org/10.1155/2010/325635
Vrhovec J, Lebar AM (2012) An uterine electromyographic activity as a measure of labor progression. Appl EMG Clin Sport Med 243–268. doi: https://doi.org/10.5772/25526
Vrhovec J, Macek-Lebar A, Rudel D (2007) Evaluating uterine electrohysterogram with entropy. 11th Mediterr Conf Med Biomed Eng Comput 144–147. https://doi.org/10.1007/978-3-540-73044-6_36
Ye-Lin Y, Bueno-Barrachina JM, Prats-boluda G, Rodriguez de Sanabria R, Garcia-Casado J (2017) Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement 97:195–202. https://doi.org/10.1016/J.MEASUREMENT.2016.11.009
Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Alberola-Rubio J, Perales A (2014) Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Comput Math Methods Med 2014:1–11. https://doi.org/10.1155/2014/470786
Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433. https://doi.org/10.1109/10.966601
[-]