- -

Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

Mostrar el registro completo del ítem

Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management. 32(3):829-844. https://doi.org/10.1007/s11269-017-1841-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/118943

Ficheros en el ítem

Metadatos del ítem

Título: Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line
Autor: Pérez-Sánchez, Modesto López Jiménez, Petra Amparo Ramos, Helena M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The development of hydraulic and optimization models in water networks analyses to improve the sustainability and efficiency through the installation of micro or pico hydropower is swelling. Hydraulic machines involved ...[+]
Palabras clave: Affinity laws , Best efficiency line (BEL) , Variation operating strategies , Energy recovery
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Management. (issn: 0920-4741 )
DOI: 10.1007/s11269-017-1841-0
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11269-017-1841-0
Agradecimientos:
This research is supported by Program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2015/2016 in the project "Methodology for Analysis of Improvement of Energy Efficiency in ...[+]
Tipo: Artículo

References

Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244

Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013

Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3 [+]
Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244

Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013

Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3

Cabrera E, Cobacho R, Soriano J (2014) Towards an Energy Labelling of Pressurized Water Networks. Procedia Eng 70:209–217. https://doi.org/10.1016/j.proeng.2014.02.024

Carravetta A, Conte MC, Fecarotta O, Ramos HM (2014a) Evaluation of PAT performances by modified affinity law. Procedia Eng 89:581–587. https://doi.org/10.1016/j.proeng.2014.11.481

Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2013) Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water 5:1211–1225. https://doi.org/10.3390/w5031211

Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2012) Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour Manag 26:3947–3959. https://doi.org/10.1007/s11269-012-0114-1

Carravetta A, Fecarotta O, Martino R, Antipodi L (2014b) PAT efficiency variation with design parameters. Procedia Eng 70:285–291. https://doi.org/10.1016/j.proeng.2014.02.032

Corominas J (2010) Agua y Energía en el riego en la época de la sostenibilidad. Ing del Agua 17(3):219–233. https://doi.org/10.4995/ia.2010.2977

Dannier A, Del Pizzo A, Giugni M, Fontana N, Marini G, Proto D (2015) Efficiency evaluation of a micro-generation system for energy recovery in water distribution networks. Int. Conf. Clean Electr Power 689–694. https://doi.org/10.1109/ICCEP.2015.7177566

Derakhshan S, Nourbakhsh A (2008) Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp Thermal Fluid Sci 32:800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004

Fecarotta O, Carravetta A, Ramos HM, Martino R (2016) An improved affinity model to enhance variable operating strategy for pumps used as turbines. J Hydraul Res 1686:1–10. https://doi.org/10.1080/00221686.2016.1141804

Fontana N, Giugni M, Portolano D (2012) Losses Reduction and Energy Production in Water-Distribution Networks. J Water Resour Plan Manag 138:237–244. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000179

Giugni M, Fontana N, Ranucci A (2014) Optimal Location of PRVs and Turbines in Water Distribution Systems. J Water Resour Plan Manag 140:06014004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000418

Giustolisi O, Savic D, Kapelan Z (2008) Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J Hydraul Eng 134:626–635. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(626)

Gulich J (2003) Effect of Reynolds number and surface roughness on the efficiency of centrifugal pump. J Fluid Eng 125:670–679

Jiménez-Bello MA, Royuela A, Manzano J, Prats AG, Martínez-Alzamora F (2015) Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric Water Manag 149:91–101. https://doi.org/10.1016/j.agwat.2014.10.026

Kevin B (1990) Optimization m o d e l for w a t e r distribution system design. J Hydraul Eng 115:1401–1418

Mataix C (2009) Turbomáquinas Hidráulicas. Universidad Pontificia Comillas, Madrid

McNabola A, Coughlan P, Corcoran L, Power C, Prysor Williams A, Harris I, Gallagher J, Styles D (2014) Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy 16:168. https://doi.org/10.2166/wp.2013.164

Moreno M, Córcoles J, Tarjuelo J, Ortega J (2010) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107:349–363. https://doi.org/10.1016/j.biosystemseng.2010.09.009

Nazari A, Meisami H, (2008) Instructing WaterGEMS Software Usage. Department of Publications and Technical Affairs of Iranian National Retrofitting Center (INRC), Tehran

Pasten C, Santamarina JC (2012) Energy and quality of life. Energy Policy 49:468–476. https://doi.org/10.1016/j.enpol.2012.06.051

Pérez-Sánchez M, Sánchez-Romero F, Ramos HM, López-Jiménez PA (2016) Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 8:1–26. https://doi.org/10.3390/w8060234

Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez PA (2017) Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water 9(2):97

Pérez Sánchez M, Sánchez-Romero FJ, Ramos H, López-Jiménez PA (2018) PATs selection towards sustainability in irrigation networks: simulated annealing as a water management tool. Renew Energy 116:234–249. https://doi.org/10.1016/j.renene.2017.09.060

Ramos HM, Borga A (1999) Pumps as turbines: an unconventional solution to energy production. Urban Water 1:261–263. https://doi.org/10.1016/S1462-0758(00)00016-9

Ramos HM, Mello M, De PK (2010) Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Sci Technol Water Supply 10:39–49. https://doi.org/10.2166/ws.2010.720

Ramos HM, Simão M, Borga A (2013) Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. J Energy Eng 139:109–117. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000096

Rossman LA (2000) EPANET 2: User’s manual. U.S. EPA. ed, Cincinnati

Samora I, Franca M, Schleiss A, Ramos HM (2016a) Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour Manag 30:1533–1547. https://doi.org/10.1007/s11269-016-1238-5

Samora I, Hasmatuchi V, Münch-Alligné C, Franca MJ, Schleiss AJ, Ramos HM (2016b) Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renew Energy 95:356–366. https://doi.org/10.1016/j.renene.2016.04.023

Sarbu I, Borza I (1998) Energetic optimization of water pumping in distribution systems. Period Polytech Ser Mech Eng 42:141–152

Shi G, Liu X, Yang J, Miao S, Li J (2015) Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller. Adv Mech Eng 7(7):1–12. https://doi.org/10.1177/1687814015593864

Simpson AR, Marchi A (2013) Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps. J Hydraul Eng 139:1314–1317. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000776

Singh P (2005) Optimization of the Internal Hydraulic and of System Design in Pumps as Turbines with Field Implementation and Evaluation. University of Karlsruhe, Karlsruhe

Suter P (1966) Representation of pump characteristics for calculation of water hammer. Sulzer Tech Rev 66:45–48

Ulanicki B, Kahler J, Coulbeck B (2008) Modeling the Efficiency and Power Characteristics of a Pump Group. J. Water Resour Plan Manag 134:88–93. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:1(88)

Yang SS, Derakhshan S, Kong FY (2012) Theoretical, numerical and experimental prediction of pump as turbine performance. Renew Energy 48:507–513. https://doi.org/10.1016/j.renene.2012.06.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem