Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244
Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013
Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3
[+]
Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244
Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013
Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3
Cabrera E, Cobacho R, Soriano J (2014) Towards an Energy Labelling of Pressurized Water Networks. Procedia Eng 70:209–217. https://doi.org/10.1016/j.proeng.2014.02.024
Carravetta A, Conte MC, Fecarotta O, Ramos HM (2014a) Evaluation of PAT performances by modified affinity law. Procedia Eng 89:581–587. https://doi.org/10.1016/j.proeng.2014.11.481
Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2013) Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water 5:1211–1225. https://doi.org/10.3390/w5031211
Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2012) Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour Manag 26:3947–3959. https://doi.org/10.1007/s11269-012-0114-1
Carravetta A, Fecarotta O, Martino R, Antipodi L (2014b) PAT efficiency variation with design parameters. Procedia Eng 70:285–291. https://doi.org/10.1016/j.proeng.2014.02.032
Corominas J (2010) Agua y Energía en el riego en la época de la sostenibilidad. Ing del Agua 17(3):219–233. https://doi.org/10.4995/ia.2010.2977
Dannier A, Del Pizzo A, Giugni M, Fontana N, Marini G, Proto D (2015) Efficiency evaluation of a micro-generation system for energy recovery in water distribution networks. Int. Conf. Clean Electr Power 689–694. https://doi.org/10.1109/ICCEP.2015.7177566
Derakhshan S, Nourbakhsh A (2008) Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp Thermal Fluid Sci 32:800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004
Fecarotta O, Carravetta A, Ramos HM, Martino R (2016) An improved affinity model to enhance variable operating strategy for pumps used as turbines. J Hydraul Res 1686:1–10. https://doi.org/10.1080/00221686.2016.1141804
Fontana N, Giugni M, Portolano D (2012) Losses Reduction and Energy Production in Water-Distribution Networks. J Water Resour Plan Manag 138:237–244. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000179
Giugni M, Fontana N, Ranucci A (2014) Optimal Location of PRVs and Turbines in Water Distribution Systems. J Water Resour Plan Manag 140:06014004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000418
Giustolisi O, Savic D, Kapelan Z (2008) Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J Hydraul Eng 134:626–635. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(626)
Gulich J (2003) Effect of Reynolds number and surface roughness on the efficiency of centrifugal pump. J Fluid Eng 125:670–679
Jiménez-Bello MA, Royuela A, Manzano J, Prats AG, Martínez-Alzamora F (2015) Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric Water Manag 149:91–101. https://doi.org/10.1016/j.agwat.2014.10.026
Kevin B (1990) Optimization m o d e l for w a t e r distribution system design. J Hydraul Eng 115:1401–1418
Mataix C (2009) Turbomáquinas Hidráulicas. Universidad Pontificia Comillas, Madrid
McNabola A, Coughlan P, Corcoran L, Power C, Prysor Williams A, Harris I, Gallagher J, Styles D (2014) Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy 16:168. https://doi.org/10.2166/wp.2013.164
Moreno M, Córcoles J, Tarjuelo J, Ortega J (2010) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107:349–363. https://doi.org/10.1016/j.biosystemseng.2010.09.009
Nazari A, Meisami H, (2008) Instructing WaterGEMS Software Usage. Department of Publications and Technical Affairs of Iranian National Retrofitting Center (INRC), Tehran
Pasten C, Santamarina JC (2012) Energy and quality of life. Energy Policy 49:468–476. https://doi.org/10.1016/j.enpol.2012.06.051
Pérez-Sánchez M, Sánchez-Romero F, Ramos HM, López-Jiménez PA (2016) Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 8:1–26. https://doi.org/10.3390/w8060234
Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez PA (2017) Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water 9(2):97
Pérez Sánchez M, Sánchez-Romero FJ, Ramos H, López-Jiménez PA (2018) PATs selection towards sustainability in irrigation networks: simulated annealing as a water management tool. Renew Energy 116:234–249. https://doi.org/10.1016/j.renene.2017.09.060
Ramos HM, Borga A (1999) Pumps as turbines: an unconventional solution to energy production. Urban Water 1:261–263. https://doi.org/10.1016/S1462-0758(00)00016-9
Ramos HM, Mello M, De PK (2010) Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Sci Technol Water Supply 10:39–49. https://doi.org/10.2166/ws.2010.720
Ramos HM, Simão M, Borga A (2013) Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. J Energy Eng 139:109–117. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000096
Rossman LA (2000) EPANET 2: User’s manual. U.S. EPA. ed, Cincinnati
Samora I, Franca M, Schleiss A, Ramos HM (2016a) Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour Manag 30:1533–1547. https://doi.org/10.1007/s11269-016-1238-5
Samora I, Hasmatuchi V, Münch-Alligné C, Franca MJ, Schleiss AJ, Ramos HM (2016b) Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renew Energy 95:356–366. https://doi.org/10.1016/j.renene.2016.04.023
Sarbu I, Borza I (1998) Energetic optimization of water pumping in distribution systems. Period Polytech Ser Mech Eng 42:141–152
Shi G, Liu X, Yang J, Miao S, Li J (2015) Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller. Adv Mech Eng 7(7):1–12. https://doi.org/10.1177/1687814015593864
Simpson AR, Marchi A (2013) Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps. J Hydraul Eng 139:1314–1317. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000776
Singh P (2005) Optimization of the Internal Hydraulic and of System Design in Pumps as Turbines with Field Implementation and Evaluation. University of Karlsruhe, Karlsruhe
Suter P (1966) Representation of pump characteristics for calculation of water hammer. Sulzer Tech Rev 66:45–48
Ulanicki B, Kahler J, Coulbeck B (2008) Modeling the Efficiency and Power Characteristics of a Pump Group. J. Water Resour Plan Manag 134:88–93. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:1(88)
Yang SS, Derakhshan S, Kong FY (2012) Theoretical, numerical and experimental prediction of pump as turbine performance. Renew Energy 48:507–513. https://doi.org/10.1016/j.renene.2012.06.002
[-]