- -

A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Hai-wei es_ES
dc.contributor.author Yu, Xue-cai es_ES
dc.contributor.author Song, Hou-bing es_ES
dc.contributor.author Lu, Zhi-han es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author You, Feng es_ES
dc.date.accessioned 2019-04-03T20:03:02Z
dc.date.available 2019-04-03T20:03:02Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1383-469X es_ES
dc.identifier.uri http://hdl.handle.net/10251/118944
dc.description.abstract [EN] Autonomous vehicle guidance and trajectory planning is one of the key technologies in the autonomous control system for intelligent vehicles. Firstly, the target pursuit model for intelligent vehicles was established and described in this text. Then, the research work for global motion planning was carried out based on Stackelberg Differential Game Theory, and the global optimal solution was obtained by using the survival type differential game. Finally, to overcome errors, we use a polynomial method to achieve the smooth motion planning. So, based on Terminal Sliding Mode method, the Active Front Steering controller design was used to calculate the desired active wheel angle for intelligent vehicle path tracking. The simulation and experiment results demonstrate the feasibility and effectiveness of this method for intelligent vehicles' path planning and tracking. es_ES
dc.description.sponsorship This paper is supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY13E080010. The first author would like to appreciate Dr. Xuecai Yu and the reviewers for the valuable discussions to improve the quality and presentation of the paper.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mobile Networks and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Intelligent vehicle es_ES
dc.subject Path planning es_ES
dc.subject Differential game es_ES
dc.subject Polynomial method es_ES
dc.subject Controller design es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11036-016-0778-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Zhejiang Province//LY13E080010/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Wang, H.; Yu, X.; Song, H.; Lu, Z.; Lloret, J.; You, F. (2018). A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles. Mobile Networks and Applications. 23(5):1165-1178. https://doi.org/10.1007/s11036-016-0778-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11036-016-0778-5 es_ES
dc.description.upvformatpinicio 1165 es_ES
dc.description.upvformatpfin 1178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\376017 es_ES
dc.contributor.funder Natural Science Foundation of Zhejiang Province
dc.description.references Yilmaz NK et al (2008) Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J Ocean Eng 33(4):522–537 es_ES
dc.description.references Garcia MA et al (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput 9(3):1102–1110 es_ES
dc.description.references Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp Sci Technol 14(8):535–541 es_ES
dc.description.references Jaillet L, Cortés J, Siméon T (2010) Sampling-based path planning on configuration-space costmaps. IEEE Trans Robot 26(4):635–646 es_ES
dc.description.references Kirillova S et al (2008) An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins. Prot: Struct Funct Bioinform 70(1):131–143 es_ES
dc.description.references Sud A et al (2008) Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans Vis Comput Graph 14(3):526–538 es_ES
dc.description.references Tsai C, Huang H, Chan C (2011) Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans Ind Electron 58(10):4813–4821 es_ES
dc.description.references Roberge V, Tarbouchi M, Labonté G (2013) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transact Indust Inform 9(1):132–141 es_ES
dc.description.references Mahmoudian N, Geisbert J, Woolsey C (2010) Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J Ocean Eng 35(1):131–143 es_ES
dc.description.references Liu S, Sun D, Zhu C (2011) Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Transact Mechatron 16(6):1021–1031 es_ES
dc.description.references Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Robot 27(1):89–98 es_ES
dc.description.references Gasparetto A et al (2012) Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput Integr Manuf 28(2):164–181 es_ES
dc.description.references Sun N et al (2012) A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Transact Mechatron 17(1):166–173 es_ES
dc.description.references Zhang R, Ge P, Zhou X, Jiang T, Wang R (2013) An Method for Vehicle-Flow Detection and Tracking in Real-Time Based on Gaussian Mixture Distribution. Adv Mech Eng 2013(861321):8 es_ES
dc.description.references Glaser S et al (2010) Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans Intell Transp Syst 11(3):589–606 es_ES
dc.description.references Anderson SJ et al (2010) An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. Int J Veh Auton Syst 8(2):190–216 es_ES
dc.description.references Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans Ind Electron 59(8):3189–3198 es_ES
dc.description.references Duan H, Liu S, Wu J (2009) Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp Sci Technol 13(8):442–449 es_ES
dc.description.references Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot trajectories. Robot Comput Integr Manuf 24(3):415–426 es_ES
dc.description.references Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Intern J Robot Res 30(7):846–894 es_ES
dc.description.references Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-logic-based reactive mission and motion planning. IEEE Trans Robot 25(6):1370–1381 es_ES
dc.description.references Wen-xiao Z, Tong-hai J, Xiao L, Jun-lin Z, Rong-hui Z, Yan-en W (2014) Transmission of wireless sensor networks based on distributed multi-staging area check method. J Jilin Univ Eng Technol Ed 44(01):246–252 es_ES
dc.description.references Kuwata Y et al (2009) Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol 17(5):1105–1118 es_ES
dc.description.references Likhachev M, Ferguson D (2009) Planning long dynamically feasible maneuvers for autonomous vehicles. Intern J Robot Res 28(8):933–945 es_ES
dc.description.references Ghabcheloo R et al (2009) Coordinated path-following in the presence of communication losses and time delays. SIAM J Control Optim 48(1):234–265 es_ES
dc.description.references Dolgov D et al (2010) Path planning for autonomous vehicles in unknown semi-structured environments. Intern J Robot Res 29(5):485–501 es_ES
dc.description.references Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot swarm. Swarm Intell 2(1):1–23 es_ES
dc.description.references Feng Y, Ronghui Z, Lie G et al (2015) Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system. Expert Syst Appl 45(2015):5932–5946 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem