Mostrar el registro sencillo del ítem
dc.contributor.author | Wang, Hai-wei | es_ES |
dc.contributor.author | Yu, Xue-cai | es_ES |
dc.contributor.author | Song, Hou-bing | es_ES |
dc.contributor.author | Lu, Zhi-han | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | You, Feng | es_ES |
dc.date.accessioned | 2019-04-03T20:03:02Z | |
dc.date.available | 2019-04-03T20:03:02Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1383-469X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/118944 | |
dc.description.abstract | [EN] Autonomous vehicle guidance and trajectory planning is one of the key technologies in the autonomous control system for intelligent vehicles. Firstly, the target pursuit model for intelligent vehicles was established and described in this text. Then, the research work for global motion planning was carried out based on Stackelberg Differential Game Theory, and the global optimal solution was obtained by using the survival type differential game. Finally, to overcome errors, we use a polynomial method to achieve the smooth motion planning. So, based on Terminal Sliding Mode method, the Active Front Steering controller design was used to calculate the desired active wheel angle for intelligent vehicle path tracking. The simulation and experiment results demonstrate the feasibility and effectiveness of this method for intelligent vehicles' path planning and tracking. | es_ES |
dc.description.sponsorship | This paper is supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY13E080010. The first author would like to appreciate Dr. Xuecai Yu and the reviewers for the valuable discussions to improve the quality and presentation of the paper. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mobile Networks and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Intelligent vehicle | es_ES |
dc.subject | Path planning | es_ES |
dc.subject | Differential game | es_ES |
dc.subject | Polynomial method | es_ES |
dc.subject | Controller design | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11036-016-0778-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Zhejiang Province//LY13E080010/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Wang, H.; Yu, X.; Song, H.; Lu, Z.; Lloret, J.; You, F. (2018). A Global Optimal Path Planning and Controller Design Algorithm for Intelligent Vehicles. Mobile Networks and Applications. 23(5):1165-1178. https://doi.org/10.1007/s11036-016-0778-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11036-016-0778-5 | es_ES |
dc.description.upvformatpinicio | 1165 | es_ES |
dc.description.upvformatpfin | 1178 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\376017 | es_ES |
dc.contributor.funder | Natural Science Foundation of Zhejiang Province | |
dc.description.references | Yilmaz NK et al (2008) Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J Ocean Eng 33(4):522–537 | es_ES |
dc.description.references | Garcia MA et al (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput 9(3):1102–1110 | es_ES |
dc.description.references | Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp Sci Technol 14(8):535–541 | es_ES |
dc.description.references | Jaillet L, Cortés J, Siméon T (2010) Sampling-based path planning on configuration-space costmaps. IEEE Trans Robot 26(4):635–646 | es_ES |
dc.description.references | Kirillova S et al (2008) An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins. Prot: Struct Funct Bioinform 70(1):131–143 | es_ES |
dc.description.references | Sud A et al (2008) Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans Vis Comput Graph 14(3):526–538 | es_ES |
dc.description.references | Tsai C, Huang H, Chan C (2011) Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans Ind Electron 58(10):4813–4821 | es_ES |
dc.description.references | Roberge V, Tarbouchi M, Labonté G (2013) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transact Indust Inform 9(1):132–141 | es_ES |
dc.description.references | Mahmoudian N, Geisbert J, Woolsey C (2010) Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J Ocean Eng 35(1):131–143 | es_ES |
dc.description.references | Liu S, Sun D, Zhu C (2011) Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Transact Mechatron 16(6):1021–1031 | es_ES |
dc.description.references | Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Robot 27(1):89–98 | es_ES |
dc.description.references | Gasparetto A et al (2012) Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput Integr Manuf 28(2):164–181 | es_ES |
dc.description.references | Sun N et al (2012) A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Transact Mechatron 17(1):166–173 | es_ES |
dc.description.references | Zhang R, Ge P, Zhou X, Jiang T, Wang R (2013) An Method for Vehicle-Flow Detection and Tracking in Real-Time Based on Gaussian Mixture Distribution. Adv Mech Eng 2013(861321):8 | es_ES |
dc.description.references | Glaser S et al (2010) Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans Intell Transp Syst 11(3):589–606 | es_ES |
dc.description.references | Anderson SJ et al (2010) An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. Int J Veh Auton Syst 8(2):190–216 | es_ES |
dc.description.references | Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans Ind Electron 59(8):3189–3198 | es_ES |
dc.description.references | Duan H, Liu S, Wu J (2009) Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp Sci Technol 13(8):442–449 | es_ES |
dc.description.references | Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot trajectories. Robot Comput Integr Manuf 24(3):415–426 | es_ES |
dc.description.references | Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Intern J Robot Res 30(7):846–894 | es_ES |
dc.description.references | Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-logic-based reactive mission and motion planning. IEEE Trans Robot 25(6):1370–1381 | es_ES |
dc.description.references | Wen-xiao Z, Tong-hai J, Xiao L, Jun-lin Z, Rong-hui Z, Yan-en W (2014) Transmission of wireless sensor networks based on distributed multi-staging area check method. J Jilin Univ Eng Technol Ed 44(01):246–252 | es_ES |
dc.description.references | Kuwata Y et al (2009) Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol 17(5):1105–1118 | es_ES |
dc.description.references | Likhachev M, Ferguson D (2009) Planning long dynamically feasible maneuvers for autonomous vehicles. Intern J Robot Res 28(8):933–945 | es_ES |
dc.description.references | Ghabcheloo R et al (2009) Coordinated path-following in the presence of communication losses and time delays. SIAM J Control Optim 48(1):234–265 | es_ES |
dc.description.references | Dolgov D et al (2010) Path planning for autonomous vehicles in unknown semi-structured environments. Intern J Robot Res 29(5):485–501 | es_ES |
dc.description.references | Nouyan S, Campo A, Dorigo M (2008) Path formation in a robot swarm. Swarm Intell 2(1):1–23 | es_ES |
dc.description.references | Feng Y, Ronghui Z, Lie G et al (2015) Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system. Expert Syst Appl 45(2015):5932–5946 | es_ES |