Mostrar el registro sencillo del ítem
dc.contributor.author | Grushka, Yaroslav I. | es_ES |
dc.date.accessioned | 2019-04-04T07:31:05Z | |
dc.date.available | 2019-04-04T07:31:05Z | |
dc.date.issued | 2019-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/118960 | |
dc.description.abstract | [EN] Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space. The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each variable (“t” and “x”) separately and function ƒx(t) = ƒ(t,x) is monotonous on T for every x ∈ X, then ƒ is continuous mapping from T × X to T1, where T and T1 are considered as topological spaces under the order topology and T × X is considered as topological space under the Tychonoff topology on the Cartesian product of topological spaces T and X. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Separately continuous mappings | es_ES |
dc.subject | Linearly ordered topological spaces | es_ES |
dc.subject | Young's theorem | es_ES |
dc.title | On monotonous separately continuous functions | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-04-04T06:30:36Z | |
dc.identifier.doi | 10.4995/agt.2019.9817 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Grushka, YI. (2019). On monotonous separately continuous functions. Applied General Topology. 20(1):75-79. https://doi.org/10.4995/agt.2019.9817 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2019.9817 | es_ES |
dc.description.upvformatpinicio | 75 | es_ES |
dc.description.upvformatpfin | 79 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | G. Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., New York, 1967. | es_ES |
dc.description.references | K. C. Ciesielski and D. Miller, A continuous tale on continuous and separately continuous functions, Real Analysis Exchange 41, no. 1 (2016), 19-54. https://doi.org/10.14321/realanalexch.41.1.0019 | es_ES |
dc.description.references | O. Karlova, V. Mykhaylyuk and O. Sobchuk, Diagonals of separately continuous functions and their analogs, Topology Appl. 160, no. 1 (2013), 1-8. https://doi.org/10.1016/j.topol.2012.09.003 | es_ES |
dc.description.references | J. L. Kelley, General topology, University series in higher mathematics, Van Nostrand, 1955. | es_ES |
dc.description.references | R. L. Krusee and J. J. Deely, Joint continuity of monotonic functions, The American Mathematical Monthly 76, no. 1 (1969), 74-76. https://doi.org/10.1080/00029890.1969.12000144 | es_ES |
dc.description.references | V. Mykhajlyuk, The Baire classification of separately continuous and monotone functions, Scientific Herald of Yuriy Fedkovych Chernivtsi National University 349 (2007), 95-97 (Ukrainian). | es_ES |
dc.description.references | V. Nesterenko, Joint properties of functions which monotony with respect to the first variable, Mathematical Bulletin of Taras Shevchenko Scientific Society 6 (2009), 195-201 (Ukrainian). | es_ES |
dc.description.references | H. Voloshyn, V. Maslyuchenko and O. Maslyuchenko, On layer-wise uniform approximation of separately continuous functioins by polynomials, Mathematical Bulletin of Taras Shevchenko Scientific Society 10 (2013), 135-158 (Ukrainian). | es_ES |
dc.description.references | W. Young, A note on monotone functions, The Quarterly Journal of Pure and Applied Mathematics (Oxford Ser.) 41 (1910), 79-87. | es_ES |