- -

On monotonous separately continuous functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On monotonous separately continuous functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Grushka, Yaroslav I. es_ES
dc.date.accessioned 2019-04-04T07:31:05Z
dc.date.available 2019-04-04T07:31:05Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118960
dc.description.abstract [EN] Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space. The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each variable (“t” and “x”) separately and function ƒx(t) = ƒ(t,x) is monotonous on T for every x ∈ X, then ƒ is continuous mapping from T × X to T1, where T and T1 are considered as topological spaces under the order topology and T × X is considered as topological space under the Tychonoff topology on the Cartesian product of topological spaces T and X. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Separately continuous mappings es_ES
dc.subject Linearly ordered topological spaces es_ES
dc.subject Young's theorem es_ES
dc.title On monotonous separately continuous functions es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:36Z
dc.identifier.doi 10.4995/agt.2019.9817
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Grushka, YI. (2019). On monotonous separately continuous functions. Applied General Topology. 20(1):75-79. https://doi.org/10.4995/agt.2019.9817 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.9817 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 79 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references G. Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., New York, 1967. es_ES
dc.description.references K. C. Ciesielski and D. Miller, A continuous tale on continuous and separately continuous functions, Real Analysis Exchange 41, no. 1 (2016), 19-54. https://doi.org/10.14321/realanalexch.41.1.0019 es_ES
dc.description.references O. Karlova, V. Mykhaylyuk and O. Sobchuk, Diagonals of separately continuous functions and their analogs, Topology Appl. 160, no. 1 (2013), 1-8. https://doi.org/10.1016/j.topol.2012.09.003 es_ES
dc.description.references J. L. Kelley, General topology, University series in higher mathematics, Van Nostrand, 1955. es_ES
dc.description.references R. L. Krusee and J. J. Deely, Joint continuity of monotonic functions, The American Mathematical Monthly 76, no. 1 (1969), 74-76. https://doi.org/10.1080/00029890.1969.12000144 es_ES
dc.description.references V. Mykhajlyuk, The Baire classification of separately continuous and monotone functions, Scientific Herald of Yuriy Fedkovych Chernivtsi National University 349 (2007), 95-97 (Ukrainian). es_ES
dc.description.references V. Nesterenko, Joint properties of functions which monotony with respect to the first variable, Mathematical Bulletin of Taras Shevchenko Scientific Society 6 (2009), 195-201 (Ukrainian). es_ES
dc.description.references H. Voloshyn, V. Maslyuchenko and O. Maslyuchenko, On layer-wise uniform approximation of separately continuous functioins by polynomials, Mathematical Bulletin of Taras Shevchenko Scientific Society 10 (2013), 135-158 (Ukrainian). es_ES
dc.description.references W. Young, A note on monotone functions, The Quarterly Journal of Pure and Applied Mathematics (Oxford Ser.) 41 (1910), 79-87. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem