- -

Fixed point results concerning α-F-contraction mappings in metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point results concerning α-F-contraction mappings in metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dey, Lakshmi Kanta es_ES
dc.contributor.author Kumam, Poom es_ES
dc.contributor.author Senapati, Tanusri es_ES
dc.date.accessioned 2019-04-04T07:57:03Z
dc.date.available 2019-04-04T07:57:03Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118962
dc.description.abstract [EN] In this paper, we introduce the notions of generalized α-F-contraction and modified generalized α-F-contraction. Then, we present sufficient conditions for existence and uniqueness of fixed points for the above kind of contractions. Necessarily, our results generalize and unify several results of the existing literature. Some examples are presented to substantiate the usability of our obtained results. es_ES
dc.description.sponsorship The authors would like to thank the learned referee for his/her insightful comments and suggestions. The Research is funded by the Council of Scientific and Industrial Research (CSIR), Government of India under the Grant Number:25(0285)/18/EMR−II. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Metric space es_ES
dc.subject Fixed point es_ES
dc.subject Generalized α-F-contraction es_ES
dc.subject Modified generalized α-F-contraction es_ES
dc.title Fixed point results concerning α-F-contraction mappings in metric spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:23Z
dc.identifier.doi 10.4995/agt.2019.9949
dc.relation.projectID info:eu-repo/grantAgreement/CSIR//25(0285)%2F18%2FEMR−II/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dey, LK.; Kumam, P.; Senapati, T. (2019). Fixed point results concerning α-F-contraction mappings in metric spaces. Applied General Topology. 20(1):81-95. https://doi.org/10.4995/agt.2019.9949 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.9949 es_ES
dc.description.upvformatpinicio 81 es_ES
dc.description.upvformatpfin 95 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.description.references S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references LB. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267-273. https://doi.org/10.2307/2040075 es_ES
dc.description.references P. Das and L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math. 33, no. 1 (2007), 33-39. es_ES
dc.description.references P. Das and L. K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca 59, no. 4 (2009), 499-504. https://doi.org/10.2478/s12175-009-0143-2 es_ES
dc.description.references L. K. Dey and S. Mondal, Best proximity point of F-contraction in complete metric space, Bull. Alahabad Math. Soc. 30, no. 2 (2015), 173-189. es_ES
dc.description.references N. V. Dung and V. L. Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam. J. Math. 43, no. 4 (2015), 743-753. es_ES
dc.description.references M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12, no. 1 (1961), 7-10. es_ES
dc.description.references D. Gopal, M. Abbas, D. K. Patel and C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Scientia 36, no. 3 (2016), 957-970. https://doi.org/10.1016/S0252-9602(16)30052-2 es_ES
dc.description.references N. Hussain, M. H. Shah, A. A. Harandi and Z. Akhtar, Common fixed point theorem for generalized contractive mappings with applications, Fixed Point Theory Appl. 2013:169, 2013. https://doi.org/10.1186/1687-1812-2013-169 es_ES
dc.description.references N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math. 18, no. 6 (2014), 1879-1895. https://doi.org/10.11650/tjm.18.2014.4462 es_ES
dc.description.references E. Karapinar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013:9, 2013. es_ES
dc.description.references H. Piri and P. Kumam, Some fixed point theorem concerning F-contractions in complete metric spaces, Fixed Point Theory Appl. 2014:210, 2014. https://doi.org/10.1186/1687-1812-2014-210 es_ES
dc.description.references H. Piri and P. Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl. 2016:45, 2016. https://doi.org/10.1186/s13663-016-0529-0 es_ES
dc.description.references B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75, no. 4 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES
dc.description.references N. Secelean and D. Wardowski, ψF-contractions: not necessarily nonexpansive Picard operators, Results Math. 70, no. 3 (2016), 415-431. https://doi.org/10.1007/s00025-016-0570-7 es_ES
dc.description.references N. Secelean, Weak F-contractions and some fixed point results, Bull. Iranian Math. Soc. 42, no. 3 (2016), 779-798. es_ES
dc.description.references T. Senapati, L. K. Dey and D.D. Dekic, Extensions of Ciric and Wardowski type fixed point theorems in D-generalized metric spaces, Fixed Point Theory Appl. 2016:33, 2016. https://doi.org/10.1186/s13663-016-0522-7 es_ES
dc.description.references S. Shukla, D. Gopal and J. M. Moreno, Fixed points of set-valued F-contractions and its application to non-linear integral equations, Filomat 31, no. 11 (2017), 3377-3390. https://doi.org/10.2298/FIL1711377S es_ES
dc.description.references D. Wardowski, Fixed points of new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012:94, 2012. https://doi.org/10.1186/1687-1812-2012-94 es_ES
dc.description.references D. Wardowski and N. V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47, no. 1 (2014), 146-155. https://doi.org/10.2478/dema-2014-0012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem