- -

F-n-resolvable spaces and compactifications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

F-n-resolvable spaces and compactifications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dahane, Intissar es_ES
dc.contributor.author Dridi, Lobna es_ES
dc.contributor.author Lazaar, Sami es_ES
dc.date.accessioned 2019-04-04T08:01:53Z
dc.date.available 2019-04-04T08:01:53Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118963
dc.description.abstract [EN] A topological space is said to be resolvable if it is a union oftwo disjoint dense subsets. More generally it is called n-resolvable if it is a union of n pairwise disjoint dense subsets. In this paper, we characterize topological spaces such that their reflections (resp., compactifications) are n-resolvable (resp., exactly-n-resolvable, strongly-exactly-n-resolvable), for some particular cases of reflections and compactifications. es_ES
dc.description.sponsorship The authors gratefully acknoweledge helpful corrections, comments and suggestions of the referee. This paper is supported by the LATAO LR11ES12. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Categories es_ES
dc.subject Functors es_ES
dc.subject Resolvable spaces es_ES
dc.subject Compactifications es_ES
dc.title F-n-resolvable spaces and compactifications es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:27Z
dc.identifier.doi 10.4995/agt.2019.10036
dc.relation.projectID info:eu-repo/grantAgreement/UTM//LATAO LR11ES12/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dahane, I.; Dridi, L.; Lazaar, S. (2019). F-n-resolvable spaces and compactifications. Applied General Topology. 20(1):97-108. https://doi.org/10.4995/agt.2019.10036 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10036 es_ES
dc.description.upvformatpinicio 97 es_ES
dc.description.upvformatpfin 108 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Université de Tunis El Manar
dc.description.references A. V. Arhangel'skii and A. J. Collins, On submaximal spaces, Topology Appl. 64 (1995), 219-241. https://doi.org/10.1016/0166-8641(94)00093-I es_ES
dc.description.references M. Al-Hajri and K. Belaid, Resolvable spaces and compactifications, Advances in Pure Mathematics 3 (2013), 365-367. https://doi.org/10.4236/apm.2013.33052 es_ES
dc.description.references K. Belaid and L. Dridi, I-spaces, nodec spaces and compactifications, Topology Appl. 161 (2014), 196-205. https://doi.org/10.1016/j.topol.2013.10.021 es_ES
dc.description.references K. Belaid, O. Echi and S. Lazaar, T(α,β)-space and Wallman compactification, International Journal of Mathematics and Mathematical Sciences 68 (2004), 3717-3735. https://doi.org/10.1155/S0161171204404050 es_ES
dc.description.references K. Belaid, L. Dridi and O. Echi, Submaximal and door compactifications, Topology Appl. 158 (2011), 1969-1975. https://doi.org/10.1016/j.topol.2011.06.039 es_ES
dc.description.references J. G. Ceder, On maximally resolvable spaces, Fund. Math. 55 (1964), 87-93. https://doi.org/10.4064/fm-55-1-87-93 https://doi.org/10.4064/fm-55-1-87-93 es_ES
dc.description.references W. W. Comfort and S. Garc'{i}a-Ferreira, Resolvability: a selective survey and some new results, Topology. Appl. 74 (1996), 149-167. https://doi.org/10.1016/S0166-8641(96)00052-1 es_ES
dc.description.references I. Dahane, L. Dridi and S. Lazaar, F Resolvable spaces, Math. Appl. 1 (2012), 1-9. es_ES
dc.description.references I. Dahane, S. Lazaar, T. Richmond and T. Turki, On resolvable primal spaces, Quaest. Math. 42 (2019), 15-35. https://doi.org/10.2989/16073606.2018.1437093 es_ES
dc.description.references L. Dridi, S.Lazaar and T. Turki, F-door spaces and F-submaximal spaces, Applied General Topology 14 (2013), 97-113. https://doi.org/10.4995/agt.2013.1621 es_ES
dc.description.references L. Dridi, A. Mhemdi and T. Turki, F-nodec spaces, Applied General Topology 16 (2015), 53-64. https://doi.org/10.4995/agt.2015.3141 es_ES
dc.description.references O. Echi and S. Lazaar, Reflective subcategories, Tychonoff spaces, and spectral spaces, Top. Proc. 34 (2009),307-319. es_ES
dc.description.references L. Feng, Strongly exactly $n$-resolvable space of arbitrarily large dispersion character, Topology. Appl. 105 (2000), 31-36. https://doi.org/10.1016/S0166-8641(99)00034-6 es_ES
dc.description.references A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Springer-Verlag, Heidelberg, 1971. es_ES
dc.description.references A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique I: le langage des schemas, Inst. Hautes Etudes Sci. Publ. Math. no. 4, 1960. es_ES
dc.description.references E. Hewitt, A problem of set theoretic topology, Duke Mathematical Journal 10 (1943), 309-333. https://doi.org/10.1215/S0012-7094-43-01029-4 es_ES
dc.description.references J. F. Kennisson, The cyclic spectrum of a Boolean flow, Theory Appl. Categ. 10 (2002), 392-409. es_ES
dc.description.references J. F. Kennisson, Spectra of finitely generated Boolean flow, Theory Appl. Categ. 16 (2006), 434-459. es_ES
dc.description.references M. M. Kovar, Which topological spaces have a weak reflection in compact spaces?, Commentationes Mathematicae Universitatis Carolinae 39 (1938), 529-536. es_ES
dc.description.references S. Lazaar, On functionally Hausdorff spaces, Missouri J. Math. Sci. 25 (2013), 88-97. es_ES
dc.description.references J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies, no. 2. Princeton University Press, 1940 Princeton, N. J. es_ES
dc.description.references R. C. Walker, The Stone-Cech compactification, Ergebnisse der Mathamatik Band 83. es_ES
dc.description.references H. Wallman, Lattices and topological spaces, Ann. Math. 39 (1938), 112-126. https://doi.org/10.2307/1968717 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem