- -

Remarks on fixed point assertions in digital topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on fixed point assertions in digital topology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.contributor.author Staecker, P. Christopher es_ES
dc.date.accessioned 2019-04-04T09:28:12Z
dc.date.available 2019-04-04T09:28:12Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118967
dc.description.abstract [EN] Several recent papers in digital topology have sought to obtain fixed point results by mimicking the use of tools from classical topology, such as complete metric spaces and homotopy invariant fixed point theory. We show that some of the published assertions based on these tools are incorrect or trivial; we offer improvements on others. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Fixed point es_ES
dc.subject Metric space es_ES
dc.title Remarks on fixed point assertions in digital topology es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:44Z
dc.identifier.doi 10.4995/agt.2019.10474
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L.; Staecker, PC. (2019). Remarks on fixed point assertions in digital topology. Applied General Topology. 20(1):135-153. https://doi.org/10.4995/agt.2019.10474 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10474 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 153 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fundamenta Mathematicae 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976. es_ES
dc.description.references L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4 es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://link.springer.com/article/10.1023/A es_ES
dc.description.references L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18 (2) (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 es_ES
dc.description.references L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19 (1) (2018), 21-53. https://doi.org/10.4995/agt.2018.7146 es_ES
dc.description.references L. Boxer, O. Ege, I. Karaca, J. Lopez, and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General es_ES
dc.description.references Topology 17(2) (2016), 159-172. https://doi.org/10.4995/agt.2016.4704 es_ES
dc.description.references S.K. Chatterjea, Fixed point theorems, Comptes rendus de l'Acadmie bulgare des Sciences 25 (1972), 727-730. es_ES
dc.description.references U.P. Dolhare and V.V. Nalawade, Fixed point theorems in digital images and applications to fractal image compression, Asian Journal of Mathematics and Computer Research 25 (1) (2018), 18-37. http://www.ikpress.org/abstract/6915 es_ES
dc.description.references M. Edelstein, An extension of Banach's contraction principle, Proceedings of the American Mathematical Society 12 (1) (1961), 7-10. https://doi.org/10.1090/s0002-9939-1961-0120625-6 es_ES
dc.description.references O. Ege and I. Karaca, The Lefschetz Fixed Point Theorem for Digital Images, Fixed Point Theory and Applications 2013:253 2013. https://doi.org/10.1186/1687-1812-2013-253 es_ES
dc.description.references O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications, 8 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08 es_ES
dc.description.references O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique 353 (11) (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006 es_ES
dc.description.references O. Ege and I. Karaca, Nielsen fixed point theory for digital images, Journal of Computational Analysis and Applications 22 (5) (2017), 874-880. es_ES
dc.description.references J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker, Homotopy equivalence of finite digital images, Journal of Mathematical Imaging and es_ES
dc.description.references Vision 53, (3), (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8 es_ES
dc.description.references G. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993), 381-396. https://doi.org/10.1006/cgip.1993.1029 es_ES
dc.description.references S-E Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 7391. https://doi.org/10.1016/j.ins.2004.03.018 es_ES
dc.description.references S-E Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Science and Applications 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19 es_ES
dc.description.references S-E Han, The fixed point property of an M-retract and its applications, Topology and its Applications 230, 139-153. https://doi.org/10.1016/j.topol.2017.08.026 es_ES
dc.description.references A. Hossain, R. Ferdausi, S. Mondal, and H. Rashid, Banach and Edelstein fixed point theorems for digital images, Journal of Mathematical Sciences and Applications 5 (2) (2017), 36-39. https://doi.org/10.12691/jmsa-5-2-2 es_ES
dc.description.references D. Jain, Common fixed point theorem for intimate mappings in digital metric spaces, International Journal of Mathematics Trends and Technology 56 (2) (2018), 91-94. https://doi.org/10.14445/22315373/ijmtt-v56p511 es_ES
dc.description.references B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Mathematics 18 (1983). https://bookstore.ams.org/conm-14 es_ES
dc.description.references K. Jyoti and A. Rani, Digital expansions endowed with fixed point theory, Turkish Journal of Analysis and Number Theory 5 (5) (2017), 146-152. https://doi.org/10.12691/tjant-5-5-1 es_ES
dc.description.references K. Jyoti and A. Rani, Fixed point theorems for β−ψ−φ-expansive type mappings in digital metric spaces, Asian Journal of Mathematics and Computer Research 24 (2) (2018), 56-66. http://www.ikpress.org/abstract/6855 es_ES
dc.description.references R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society 60 (1968), 71-76. es_ES
dc.description.references L.N. Mishra, K. Jyoti, A. Rani, and Vandana, Fixed point theorems with digital contractions image processing, Nonlinear Science Letters A 9 (2) (2018), 104-115. http://www.nonlinearscience.com/paper.php?pid=0000000271 es_ES
dc.description.references C. Park, O. Ege, S. Kumar, D. Jain, and J. R. Lee, Fixed point theorems for various contraction conditions in digital metric spaces, Journal of Computational Analysis and Applications 26 (8) (2019), 1451-1458. es_ES
dc.description.references S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14 (1971), 121-124. https://doi.org/10.4153/cmb-1971-024-9 es_ES
dc.description.references B.E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, II, Indian Journal of Pure and Applied Mathematics 24 (11) (1993), 691-703. es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital images, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES
dc.description.references B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α − ψ-contractive mappings, Nonlinear Analysis: Theory, Methods & Applications 75 (4) (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES
dc.description.references T. Zamfirescu, Fixed point theorems in metric spaces, Archiv der Mathematik 23 (1972), 292-298. https://doi.org/10.1007/bf01304884 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem