Mostrar el registro sencillo del ítem
dc.contributor.author | Izuchukwu, C. | es_ES |
dc.contributor.author | Aremu, K. O. | es_ES |
dc.contributor.author | Mebawondu, A. A. | es_ES |
dc.contributor.author | Mewomo, O. T. | es_ES |
dc.date.accessioned | 2019-04-04T09:38:52Z | |
dc.date.available | 2019-04-04T09:38:52Z | |
dc.date.issued | 2019-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/118970 | |
dc.description.abstract | [EN] The main purpose of this paper is to introduce a viscosity-type proximal point algorithm, comprising of a nonexpansive mapping and a finite sum of resolvent operators associated with monotone bifunctions. A strong convergence of the proposed algorithm to a common solution of a finite family of equilibrium problems and fixed point problem for a nonexpansive mapping is established in a Hadamard space. We further applied our results to solve some optimization problems in Hadamard spaces. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Equilibrium problems | es_ES |
dc.subject | Monotone bifunctions | es_ES |
dc.subject | Variational inequalities | es_ES |
dc.subject | Convex feasibility problems | es_ES |
dc.subject | Minimization problems | es_ES |
dc.subject | Viscosity iterations | es_ES |
dc.subject | CAT(0) space | es_ES |
dc.title | A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-04-04T06:29:56Z | |
dc.identifier.doi | 10.4995/agt.2019.10635 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Izuchukwu, C.; Aremu, KO.; Mebawondu, AA.; Mewomo, OT. (2019). A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Applied General Topology. 20(1):193-210. https://doi.org/10.4995/agt.2019.10635 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2019.10635 | es_ES |
dc.description.upvformatpinicio | 193 | es_ES |
dc.description.upvformatpfin | 210 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | K. O. Aremu, C. Izuchukwu, G. C. Ugwunnadi and O. T. Mewomo, On the proximal point algorithm and demimetric mappings in CAT(0) spaces, Demonstr. Math. 51 (2018), 277-294. https://doi.org/10.1515/dema-2018-0022 | es_ES |
dc.description.references | M. Bacák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689-701. https://doi.org/10.1007/s11856-012-0091-3 | es_ES |
dc.description.references | M. Bacák and S. Riech, The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces, J. Fixed Point Theory Appl. 16 (2014), 189-202. https://doi.org/10.1007/s11784-014-0202-3 | es_ES |
dc.description.references | I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata 133 (2008), 195-218. https://doi.org/10.1007/s10711-008-9243-3 | es_ES |
dc.description.references | M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim Theory Appl. 90 (1996), 31-43. https://doi.org/10.1007/BF02192244 | es_ES |
dc.description.references | Bridson and A. Haefliger, Metric spaces of nonpositive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999. | es_ES |
dc.description.references | F. Bruhat and J. Tits, Groupes réductifs sur un corp local, I. Donneés Radicielles Valuées, Institut des Hautes Études Scientifiques 41 (1972). https://doi.org/10.1007/bf02715544 | es_ES |
dc.description.references | P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320, no. 2 (2006), 983-987. https://doi.org/10.1016/j.jmaa.2005.08.006 | es_ES |
dc.description.references | V. Colao, G. López, G. Marino, V. Martín-Márquez, Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl. 388 (2012), 61-77. https://doi.org/10.1016/j.jmaa.2011.11.001 | es_ES |
dc.description.references | P. L. Combetes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136. | es_ES |
dc.description.references | H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, arXiv:1410.1137v1[math.FA]2014. | es_ES |
dc.description.references | S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 64, no. 4 (2006), 762-772. https://doi.org/10.1016/j.na.2005.09.044 | es_ES |
dc.description.references | S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036 | es_ES |
dc.description.references | J. N. Ezeora and C. Izuchukwu, Iterative approximation of solution of split variational inclusion problems, Filomat, to appear. | es_ES |
dc.description.references | K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, New York, (1984). | es_ES |
dc.description.references | A. N. Iusem, G. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., Ser. B 116 (2009), 259-273. https://doi.org/10.1007/s10107-007-0125-5 | es_ES |
dc.description.references | C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces, Numer. Algor., to appear. https://doi.org/10.1007/s11075-018-0633-9 | es_ES |
dc.description.references | B. A. Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141, no. 3 (2013), 1029-1039. https://doi.org/10.1090/S0002-9939-2012-11743-5 | es_ES |
dc.description.references | H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math Soc. 103, no. 1 (2017), 70-90. https://doi.org/10.1017/S1446788716000446 | es_ES |
dc.description.references | H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, J. Fixed Point Theory Appl. 17 (2015), 557-574. https://doi.org/10.1007/s11784-015-0245-0 | es_ES |
dc.description.references | W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689-3696. https://doi.org/10.1016/j.na.2007.04.011 | es_ES |
dc.description.references | P. Kumam and P. Chaipunya, Equilibrium problems and proximal algorithms in Hadamard spaces, arXiv: 1807.10900v1 [math.oc]. | es_ES |
dc.description.references | L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (2007), 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081 | es_ES |
dc.description.references | T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182. https://doi.org/10.1090/S0002-9939-1976-0423139-X | es_ES |
dc.description.references | B. Martinet, Régularisation d'Inéquations Variationnelles par approximations successives, Rev.Francaise d'Inform. et de Rech. Opérationnelle 3 (1970), 154-158. https://doi.org/10.1051/m2an/197004r301541 | es_ES |
dc.description.references | M. A. Noor and K. I. Noor, Some algorithms for equilibrium problems on Hadamard manifolds, J. Inequal. Appl. 2012:230, 8 pp. https://doi.org/10.1186/1029-242x-2012-230 | es_ES |
dc.description.references | C. C. Okeke and C. Izuchukwu, A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spaces, Optimization Methods and Software, to appear. | es_ES |
dc.description.references | https://doi.org/10.1080/10556788.2018.1472259 | es_ES |
dc.description.references | O. K. Oyewole, L. O Jolaoso, C. Izuchukwu and O. T. Mewomo, On approximation of common solution of finite family of mixed equilibrium problems involving μ−α relaxed monotone mapping in a Banach space, U. P. B. Sci. Bull., Series A, to appear. | es_ES |
dc.description.references | S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537-558. https://doi.org/10.1016/0362-546X(90)90058-O | es_ES |
dc.description.references | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898. https://doi.org/10.1137/0314056 | es_ES |
dc.description.references | S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl. 2010, Art. ID 471781, 13 pp. | es_ES |
dc.description.references | Y. Song and X. Liu, Convergence comparison of several iteration algorithms for the common fixed point problems, Fixed Point Theory Appl. 2009, Art. ID 824374, 13 pp. https://doi.org/10.1155/2009/824374 | es_ES |
dc.description.references | R. Suparatulatorn, P. Cholamjiak and S. Suantai, On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces, Optim. Methods and Software 32 (2017), 182-192. https://doi.org/10.1080/10556788.2016.1219908 | es_ES |
dc.description.references | T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. 1 (2005), 103-123. https://doi.org/10.1155/FPTA.2005.103 | es_ES |
dc.description.references | J. Tang, Viscosity approximation methods for a family of nonexpansive mappings in CAT(0) Spaces, Abstr. Appl. Anal. 2014, Art. ID 389804, 9 pages. G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat., to appear. | es_ES |
dc.description.references | G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat., to appear. https://doi.org/10.1007/s13370-018-0633-x | es_ES |
dc.description.references | R. Wangkeeree and P. Preechasilp, Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces, J. Inequal. Appl. 2013, Art. ID 93. https://doi.org/10.1186/1029-242X-2013-93 | es_ES |
dc.description.references | H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66, no. 1 (2002), 240-256. https://doi.org/10.1112/S0024610702003332 | es_ES |