- -

Generic theorems in the theory of cardinal invariants of topological spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generic theorems in the theory of cardinal invariants of topological spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramírez-Páramo, Alejandro es_ES
dc.contributor.author Tenorio, Jesús F. es_ES
dc.date.accessioned 2019-04-04T09:42:24Z
dc.date.available 2019-04-04T09:42:24Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118971
dc.description.abstract [EN] The main aim of this paper is to present a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related. Moreover, we use this result and the weak Hausdorff number, H∗, introduced by Bonanzinga in [Houston J. Math. 39 (3) (2013), 1013–1030], to generalize some upper bounds on the cardinality of topological spaces. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cardinal functions es_ES
dc.subject Compact spaces es_ES
dc.subject Lindelöf spaces es_ES
dc.subject Weak Hausdorff number of a space es_ES
dc.title Generic theorems in the theory of cardinal invariants of topological spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:30Z
dc.identifier.doi 10.4995/agt.2019.10682
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ramírez-Páramo, A.; Tenorio, JF. (2019). Generic theorems in the theory of cardinal invariants of topological spaces. Applied General Topology. 20(1):211-222. https://doi.org/10.4995/agt.2019.10682 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10682 es_ES
dc.description.upvformatpinicio 211 es_ES
dc.description.upvformatpfin 222 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168 es_ES
dc.description.references A. V. Arhangel'skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36, no. 2 (1995), 303-325. es_ES
dc.description.references A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955. es_ES
dc.description.references A. Bella, On two cardinal inequalities involving free sequences, Topology Appl. 159 (2012), 3640-3643. https://doi.org/10.1016/j.topol.2012.09.008 es_ES
dc.description.references M. Bonanzinga, D. Stavrova and P. Staynova, Separation and cardinality - Some new results and old questions, Topology Appl. 221 (2017), 556-569. https://doi.org/10.1016/j.topol.2017.02.007 es_ES
dc.description.references M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39, no. 3 (2013), 1013-1030. es_ES
dc.description.references F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Hausdorff spaces, Topology Appl. 160 (2013), 137-142. https://doi.org/10.1016/j.topol.2012.10.007 es_ES
dc.description.references F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Urysohn spaces, es_ES
dc.description.references A. Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66, no. 1 (1977), 138-142. https://doi.org/10.1090/S0002-9939-1977-0451184-8 es_ES
dc.description.references A. A. Gryzlov, Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980), 506-509. es_ES
dc.description.references R. E. Hodel, A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115-120. es_ES
dc.description.references R. E. Hodel, Arhangel'skii's solution to Alexandroff's problem: A survey, Topology Appl. 153, no. 13 (2006), 2199-2217. https://doi.org/10.1016/j.topol.2005.04.011 es_ES
dc.description.references R. E. Hodel, Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5 es_ES
dc.description.references I. Juhász, Cardinal functions in topology- 10 years later, Math. Center Tract. 123, Amsterdam, 1980. es_ES
dc.description.references S. Shu-Hao, Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104 (1988), 313-316. https://doi.org/10.2307/2047509 es_ES
dc.description.references S. Spadaro, A short proof of a theorem of Juhász, Topology Appl. 158, no. 16 (2011), 2091-2093. https://doi.org/10.1016/j.topol.2011.06.002 es_ES
dc.description.references S. Willard and U. N. B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452-455. https://doi.org/10.4153/CMB-1984-070-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem