- -

On rings of Baire one functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On rings of Baire one functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Deb Ray, A. es_ES
dc.contributor.author Mondal, Atanu es_ES
dc.date.accessioned 2019-04-04T10:08:09Z
dc.date.available 2019-04-04T10:08:09Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118974
dc.description.abstract [EN] This paper introduces the ring of all real valued Baire one functions, denoted by B1(X) and also the ring of all real valued bounded Baire one functions, denoted by B∗1(X). Though the resemblance between C(X) and B1(X) is the focal theme of this paper, it is observed that unlike C(X) and C∗(X) (real valued bounded continuous functions), B∗1 (X) is a proper subclass of B1(X) in almost every non-trivial situation. Introducing B1-embedding and B∗1-embedding, several analogous results, especially, an analogue of Urysohn’s extension theorem is established. es_ES
dc.description.sponsorship The authors are thankful to Professor S. K. Acharyya, Retired Professor, Department of Pure Mathematics, University of Calcutta for his continuous support and encouragement. We also acknowledge the learned referee for his valuable comments. The second author is supported by Council of Scientific and Industrial Research, HRDG, India. Sanction No.- 09/028(0998)/2017-EMR-1. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject B1(X) es_ES
dc.subject B∗1(X) es_ES
dc.subject Zero set of a Baire one function es_ES
dc.subject Completely separated by B1(X) es_ES
dc.subject B1-embedded es_ES
dc.subject B∗1-embedded es_ES
dc.title On rings of Baire one functions es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:40Z
dc.identifier.doi 10.4995/agt.2019.10776
dc.relation.projectID info:eu-repo/grantAgreement/CSIR//HRDG%2F09%2F028(0998)%2F2017-EMR-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Deb Ray, A.; Mondal, A. (2019). On rings of Baire one functions. Applied General Topology. 20(1):237-249. https://doi.org/10.4995/agt.2019.10776 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10776 es_ES
dc.description.upvformatpinicio 237 es_ES
dc.description.upvformatpfin 249 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES
dc.description.references J. P. Fenecios and E. A. Cabral, On some properties of Baire-1 functions, Int. Journal of Math. Analysis 7, no. 8 (2013), 393-402. https://doi.org/10.12988/ijma.2013.13035 es_ES
dc.description.references I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15. es_ES
dc.description.references L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand Reinhold Co., 1960. https://doi.org/10.1007/978-1-4615-7819-2 es_ES
dc.description.references E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948), 54-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9 es_ES
dc.description.references P. Y. Lee, W. K. Tang and D. Zhao, An equivalent definition of functions of the first Baire class, Proc. Amer. Math. Soc. 129, no. 8 (2000), 2273-2275. https://doi.org/10.1090/S0002-9939-00-05826-3 es_ES
dc.description.references M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481. https://doi.org/10.1090/S0002-9947-1937-1501905-7 es_ES
dc.description.references L. Vesely, Characterization of Baire-one functions between topological spaces, Acta Universitatis Carolinae Mathematica et Physica 33, no. 2 (1992), 143-156. es_ES
dc.description.references D. Zhao, Functions whose composition with Baire class one functions are Baire class one, Soochow Journal of Mathematics 33, no. 4 (2007), 543-551. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem