- -

Exact computation for existence of a knot counterexample

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exact computation for existence of a knot counterexample

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marinelli, K. es_ES
dc.contributor.author Peters, T. J. es_ES
dc.date.accessioned 2019-04-04T10:13:01Z
dc.date.available 2019-04-04T10:13:01Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118975
dc.description.abstract [EN] Previously, numerical evidence was presented of a self-intersecting Bezier curve having the unknot for its control polygon. This numerical demonstration resolved open questions in scientic visualization, but did not provide a formal proof of self-intersection. An example with a formal existence proof is given, even while the exact self-intersection point remains undetermined. es_ES
dc.description.sponsorship The authors acknowledge, with appreciation, the contributions of •D. Marsh, for software that generated experimental visualizations and related computations, •the reviewers, for singularly comprehensive and constructive comments,and •the editors, for their keen insight and informed perspective in selecting those reviewers. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Knot theory es_ES
dc.subject Isotopy es_ES
dc.subject Parametric curve es_ES
dc.title Exact computation for existence of a knot counterexample es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:30:09Z
dc.identifier.doi 10.4995/agt.2019.10928
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Marinelli, K.; Peters, TJ. (2019). Exact computation for existence of a knot counterexample. Applied General Topology. 20(1):251-264. https://doi.org/10.4995/agt.2019.10928 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10928 es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 264 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Cybergloves. http://www.cyberglovesystems.com/cyberglove-iii/ es_ES
dc.description.references ManusVR. https://manus-vr.com/ es_ES
dc.description.references Virtual motion labs. http://www.virtualmotionlabs.com/ es_ES
dc.description.references N. Amenta, T. J. Peters and A. C. Russell, Computational topology: Ambient isotopic approximation of 2-manifolds, Theoretical Computer Science 305 (2003), 3-15. https://doi.org/10.1016/s0304-3975(02)00691-6 es_ES
dc.description.references L. E. Andersson, S. M. Dorney, T. J. Peters and N. F. Stewart, Polyhedral perturbations that preserve topological form, CAGD 12, no. 8 (1995), 785-799. https://doi.org/10.1016/0167-8396(94)00039-7 es_ES
dc.description.references L. E. Andersson, T. J. Peters and N. F. Stewart, Selfintersection of composite curves and surfaces, CAGD 15 (1998), 507-527. es_ES
dc.description.references M. A. Armstrong, Basic Topology, Springer, New York, 1983. es_ES
dc.description.references R. H. Bing, The Geometric Topology of 3-Manifolds, American Mathematical Society, Providence, RI, 1983. es_ES
dc.description.references J. Bisceglio, T. J. Peters, J. A. Roulier and C. H. Sequin, Unknots with highly knotted control polygons, CAGD 28, no. 3 (2011), 212-214. https://doi.org/10.1016/j.cagd.2011.01.001 es_ES
dc.description.references F. Chazal and D. Cohen-Steiner, A condition for isotopic approximation, Graphical Models 67, no. 5 (2005), 390-404. https://doi.org/10.1016/j.gmod.2005.01.005 es_ES
dc.description.references T. Culver, J. Keyser and D. Manocha, Exact computation of the medial axis of a polyhedron, Computer Aided Geometric Design 21, no. 1 (2004), 65-98. https://doi.org/10.1016/j.cagd.2003.07.008 es_ES
dc.description.references T. Etiene, L. G. Nonato, C. E. Scheidegger, J. Tierny, T.J. Peters, V. Pascucci, R. M.Kirby and C. T. Silva, Topology verification for isosurface extraction, IEEE Trans. Vis. Comput. Graph. 18, no. 6 (2012), 952-965. https://doi.org/10.1109/tvcg.2011.109 es_ES
dc.description.references G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, Academic Press, Inc., 1996. es_ES
dc.description.references J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles and Practice (2Nd Ed.), Addison-Wesley Longman Publishing Co., Inc., Boston, MA,USA, 1990. es_ES
dc.description.references D. Jiang and N. F. Stewart, Backward error analysis in computational geometry, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.50-59. es_ES
dc.description.references K. E. Jordan, J. Li, T. J. Peters and J. A. Roulier, Isotopic equivalence from Bézier curve subdivision for application to high performance computing, CAGD 31 (2014), 642-655. https://doi.org/10.1016/j.cagd.2014.07.002 es_ES
dc.description.references K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters and A. Russell, Modeling time and topology for animation and visualization with examples on parametric geometry, Theoretical Computer Science 405 (2008), 41-49. https://doi.org/10.1016/j.tcs.2008.06.023 es_ES
dc.description.references L. Kettner, K. Mehlhorn, S. Pion, S. Schirra and C. Yap, Classroom examples of robustness problems in geometric computations, Computational Geometry 40, no. 1 (2008),61-78. https://doi.org/10.1016/j.comgeo.2007.06.003 es_ES
dc.description.references R. M. Kirby and C. T. Silva, The need for verifiable visualization, IEEE Computer Graphics and Applications September/October (2008), 1-9. es_ES
dc.description.references J. M. Lane and R. F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE, PAMI-2no. 1, January 1980. es_ES
dc.description.references J. Li and T. J. Peters, Isotopic convergence theorem, Journal of Knot Theory and Its Ramifications 22, no. 3 (2013). https://doi.org/10.1142/s0218216513500120 es_ES
dc.description.references J. Li, T. J. Peters, D. Marsh and K. E. Jordan, Computational topology counter examples with 3D visualization of Bézier curves, Applied General Topology 13, no. 2 (2012), 115-134. https://doi.org/10.4995/agt.2012.1624 es_ES
dc.description.references G. McGill, Molecular movies coming to a lecture near you, Cell 133, no. 7 (2008), 1127-1132. https://doi.org/10.1016/j.cell.2008.06.013 es_ES
dc.description.references J. Munkres, Topology, Prentice Hall, 2nd edition, 1999. es_ES
dc.description.references M. Neagu, E. Calcoen and B. Lacolle, Bézier curves: topological convergence of the control polygon, 6th Int. Conf. on Mathematical Methods for Curves and Surfaces, Vanderbilt (2000), pp. 347-354. es_ES
dc.description.references J. Peters and X. Wu, On the optimality of piecewise linear max-norm enclosures based on SLEFES, International Conference on Curves and Surfaces, Saint-Malo, France, 2002. es_ES
dc.description.references L. Piegl and W. Tiller, The NURBS Book, Springer, New York, 1997. es_ES
dc.description.references C. H. Sequin, Spline knots and their control polygons with differing knottedness, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-152.html es_ES
dc.description.references M. Wertheim and K. Millett, Where the wild things are: An interview with Ken Millett, Cabinet 20, 2006. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem