- -

Comparación de distintos esquemas numéricos para resolver la onda cinemática

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparación de distintos esquemas numéricos para resolver la onda cinemática

Mostrar el registro completo del ítem

López, M.; Diz, J.; Ayuso, JL.; Peña, A. (1998). Comparación de distintos esquemas numéricos para resolver la onda cinemática. Ingeniería del Agua. 5(1):73-81. https://doi.org/10.4995/ia.1998.2745

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/119007

Ficheros en el ítem

Metadatos del ítem

Título: Comparación de distintos esquemas numéricos para resolver la onda cinemática
Autor: López, Martín Diz, José Ayuso, José Luis Peña, Adolfo
Fecha difusión:
Resumen:
[ES] El movimiento superficial del agua en el suelo puede ser descrito por las denominadas ecuaciones de Saint-Vénant, que forman un sistema de ecuaciones diferenciales en derivadas parciales. La resolución numérica de ...[+]
Palabras clave: Ingeniería del agua , Ingeniería civil , Ingeniería hidráulica
Derechos de uso: Reserva de todos los derechos
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.1998.2745
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.1998.2745
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//AMB96-1158/ES/Estrategias para el control de la erosión en zonas de alta montaña/
Agradecimientos:
El desarrollo de este trabajo forma parte del Proyecto de Investigación AMB96-1158 Estrategias para el control de la erosión en zonas de alta montaña financiado por La Comisión Interministerial de Ciencia y Tecnología.[+]
Tipo: Artículo

References

Berger, R.C. y Stockstill, R.L., (1995), Finite Element Model for High-Velocity Channels, Journal of Hydraulic Engineering, 121:710-716.

Blanford, G.E. y Meadows, M.E., (1990), Finite Element Simulation of Nonlinear Kinematic Surface Runoff, Journal of Hydrology, 119:335-356.

Blanford, G.E. y Ormsbee, L.E., (1993), A Diffusion-Wave Finite Element Model for Channel Networks, Journal of Hydrology, 142:99-120. [+]
Berger, R.C. y Stockstill, R.L., (1995), Finite Element Model for High-Velocity Channels, Journal of Hydraulic Engineering, 121:710-716.

Blanford, G.E. y Meadows, M.E., (1990), Finite Element Simulation of Nonlinear Kinematic Surface Runoff, Journal of Hydrology, 119:335-356.

Blanford, G.E. y Ormsbee, L.E., (1993), A Diffusion-Wave Finite Element Model for Channel Networks, Journal of Hydrology, 142:99-120.

Boyce, R.C. y Diprima, W.E., (1977), Elementary Differential Equations and Boundary Value Problems, J. Wiley & Sons, Inc., Londres.

Carnahan, B., Luther, H.A. y Wilkes, J.O., (1969), Applied Numerical Methods, J. Wiley & Sons, Inc., Londres.

Celia, M.A. y Gray, W.G., (1992). Numerical Methods for Differential Equations. Prentice-Hall. New Jersey.

Diz, J., (1993), Análisis de sistemas hidrológicos complejos mediante modelos distribuidos, Tesis doctoral, Dpt° de Agronomía. Universidad de Córdoba.

Dooge, J.C.I., (1986), Locking for Hydrologie Laws, Water Resources Research, 22:465-485.

Eagleson, P.S., (1970) Dynamic Hydrology, McGraw-Hill, Nueva York.

Jensen, O.K. y Finlayson, B.A., (1980) Oscillation Limits for Weighted Residual Methods Applied to Convective Diffusion Equations, International Journal for Numerical Methods in Engineering, 15:1681-1986.

Katopodes, N.D., (1984) A Dissipative Galerkin Scheme for Open-Channel Flow, Journal of Hydraulic Engineering, 110:450-466.

Lapidus, L. y Finder, G.F., (1982) Numerical Solution of Partial Differential Equations in Science and Engineering, J. Wiley & Sons, Inc., Nueva York.

Ligget, J.A. y Woolhiser, D.A., (1967) Difference Solutions of the Shallow-Water Equation. Journal of Engineering of Mechanical Division, 93:39-71.

Lighthill, M.J. y Whitam, G. B., (1955) On Kinematic Waves: I Flood Movement in Long Rivers, Proc. R. Soc. Londres, A, 281-316.

Morris, E.M. y Woolhiser, D.A., (1980) Unsteady One-dimensional Flow over a Plane: Partial Equilibrium and Recession Hydrographs. Water Resources Research, 16:355-360.

Ponce, V.M., (1991) The Kinematic Wave Controversy. Journal of Hydraulic Engineering. 117:511-525.

Smith, G.D., (1975) Numerical Solution of Partial Differential Equations. Oxford University Press. Londres.

Streikoff, T.S. y Falvey, H.T., (1993) Numerical Methods Used To Model Unsteady Chanel Flow, Journal of Irrigation and Drainage Engineering. 119:637-655.

Vieux, B.E., (1988) Finite Element Analysys of Hydrologic Response Areas Using Geographic Information Systems, Ph.D. diss., Dept. Agricultural Engineering, Michigan State University,

Westerink, J.J. y Shea, D.; (1989) Consistent Higher Degree Petrov-Galerkin Methods for the Solution of The transient Convection-Diffusion Equation. International Journal for Numerical Methods in Engineering. 28:1077-1101.

Wooding, R. A., (1965) A Hydraulic Model for the Catchment-Stream Problem: I Kinematic-Wave Theory. Journal of Hydrology, 3:254-267.

Zienkiewicz, O.C. y Taylor, R.L., (1994) El método de los elementos finitos. Cuarta edición, Vol. 2, McGraw-Hill/Interamericana de España. Madrid.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem