- -

Simulación de flujos en canales abiertos con pendientes fuertes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Simulación de flujos en canales abiertos con pendientes fuertes

Show full item record

Salaheldin, TM.; Imran, J.; Chaudhry, MH. (2000). Simulación de flujos en canales abiertos con pendientes fuertes. Ingeniería del Agua. 7(4):391-408. https://doi.org/10.4995/ia.2000.2854

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/119253

Files in this item

Item Metadata

Title: Simulación de flujos en canales abiertos con pendientes fuertes
Author:
Issued date:
Abstract:
[ES] En el presente artículo se discute la simulación de flujos en canales abiertos con frentes pronunciados. Los métodos existentes en la literatura para representar este tipo de flujos son el método de las características, ...[+]
Subjects: Onda de choque , Bore , Ecuaciones determinantes , Características , Diferencias finitas , Elementos finitos , Volúmenes finitos , Aplicaciones , Zonas áridas , Zonas semiáridas , Procesos hidrológicos , Modelos matemáticos , Ciclo hidrológico
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2000.2854
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2000.2854
Type: Artículo

References

Akanbi, A. A., and Katopodes, N. D., Model for Flood Propagation on Initially Dry land, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 7, pp. 689, 706, 1988.

Alcrudo, F., and Garcia-Navarro, P., A High-Resolution Godunov-Type Scheme in Finite Volumes for the 2-D shallow Water Equations, International Journal of Numerical Methods in Fluids, vol. 16, pp 489-505, 1993.

Anderson, D. A., Tannehill, J. D., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, 1984. [+]
Akanbi, A. A., and Katopodes, N. D., Model for Flood Propagation on Initially Dry land, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 7, pp. 689, 706, 1988.

Alcrudo, F., and Garcia-Navarro, P., A High-Resolution Godunov-Type Scheme in Finite Volumes for the 2-D shallow Water Equations, International Journal of Numerical Methods in Fluids, vol. 16, pp 489-505, 1993.

Anderson, D. A., Tannehill, J. D., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, 1984.

Bagge, G., and Herbich, J. B., Transitions in Supercritical Open Channel Flow, Journal of Hydraulic Division, ASCE, Vol. 93, No. 5, pp. 23-41, 1967.

Baker, J. A., Finite Element Computational Fluid Dynamics, McGraw Hill, New York, NY, 1983.

Basco, D. R., Introduction to Rapidly Varied Unsteady Free Surface Flow Computations, Water Resources Investigation Report, No. 83-4284, 1983.

Beam, R. M., and Warming, R. F., An Explicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form, Journal of Computational Physics, vol. 22, pp. 87-110, 1976.

Bellos, C. V, Soulis, J. V., and Sakkas, J. G., Computation of two-Dimensional Dam-Break induced Flows, Advances in Water Resources, vol. 14, no. 1, 31-41, 1991.

Berger, R. C. Jr., A Finite Element Scheme for Shock Capturing, Technical Report, TR-93-12, U.S. Army Engineering Waterway Experiment Station, Vicksburg, Missorri, 1993.

Berger, R. C., and Stockstill, R. L., Finite Element Model for High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 121, no. 10, pp. 710-716, 1995.

Bhallamudi, S. M., and Chaudhry, M. H., Computation of Flows in Open-Channel Transitions, Journal of Hydraulic Research, vol. 1, pp. 77-93, 1992.

Chaudhry, M. H., Applied Hydraulic Transients, 2nd edition, Van Nostrand Reinhold, New York, N.Y., 1987.

Chaudhry, M. H., Open Channel Flow, Prentice Hall, Englewood Cliffs, NJ, 1993.

Chaudhry, M. H., Computation of Open-Channel Flows with Shocks, 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, Mechanical Engineering Publication Limited, BHR Group, UK, 1996

Chaudhry, M. H., and Barber, M. E., Open Channel Flow, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998.

Demuren, A. O., Prediction of Steady Surface-Layer Flows, Ph.D. thesis, University of London, 1979.

Fennema, R. J., and Chaudhry, M. H., Explicit Methods for Two-dimensional unsteady Transient Free-Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 116, no. 4, pp. 1013-1034, 1990.

Garcia, R., and Kahawita, R. A., Numerical Solution of the St. Venant Equations with MacCormack Finite Difference Scheme, International Journal Numerical Methods in Fluids, 6, 259-274, 1986.

Gharangik, A., and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Journal of Hydraulic Engineering, ASCE, vol. 117, no. 9, pp. 1195-1211, 1991.

Herbich, J. B., and Walsh, P., Supercritical flow in Rectangular expansions, Journal of Hydraulic Division, ASCE, vol. 98, no. 9, pp. 1691-1700, 1972.

Jimenez, O.F. and Chaudhry, M. H., Computation of Supercritical free Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 4, pp. 377-395, 1988.

Jameson, A., Schmidt, W., and Turkel, E., Numerical Solutions of Euler Equations by Finite Volume Methods using Runge-Kutta time-stepping Schemes, AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259, 1981.

Katopodes, H., and Strelkoff, T., Computing Two-dimensional Dam-Break Flood Waves, Journal of the Hydraulics Division, ASCE, vol. 104, no. 9, pp.1269-1288, 1978.

Lee, J. K., and Froelich, D. C., Review of Literature on the Finite Element Solution of the equations of Two-di mensional Surface-Water Flow in Horizontal Plane, Circular:1009 U.S. Geological Survey, Denver, Colorado, USA, 1986.

Lax, P. D., and Wendroff, B., Systems of Conservation Laws, Com. Pure Applied Mathematics, 13:217-37, 1960.

Osher, S., and Solomone, F., Upwind difference Scheme for Hyperbolic Systems of Conservation Laws, Mathematical Computation, 38, pp. 339-374, 1982.

Patankar, S. V., Karki, K. C., and Kelkar, K. M., Finite Volume Method, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998.

Pepper, D. W., and Baker, A. J., Finite Differences versus Finite Elements, in Handbook of Numerical Heat Transfer, W. J. Minkowycz, E. M. Sparrow, G. E. Schneider and R. H. Pletcher, Eds, John Wilye & Sons, New York, 1988.

Raman, A. and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Proceeding, North America Water and Environment Congress 96, ASCE, 1996.

Stockstill, R. L., Berger, R. C., and Nece, R. E., Two-dimensional Flow Model for Trapezoidal High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 123, no. 10, pp. 844-852, 1997.

Stockstill, R. L., A Two-dimensional Free-surface Flow Model for Trapezoidal High-Velocity Channels, Ph.D. thesis, Department of Civil Engineering, University of Washington, Seattle, Washington, USA, 1995.

Spekreijse, S. P., Multigrid Solution of Steady Euler Equations, CWI Tract, Amsterdam, The Netherlands, 1988.

Tan, W., Shallo Water Hydrodynamics, Elsevier, Amsterdam, The Netherlands, 1992.

Thompson, J., Numerical Modeling of Irregular Hydraulic Jumps, Proceeding of Hydraulic Engineering Conference, ASCE, pp. 749-754, 1990.

Villegas, F., Design of the Punchina Spillway, Water Power Dam Construction, Nov. 32-34, 1976.

Younus, M., and Chaudhry, M. H., A Depth averaged k-(turbulence Model for the Computation of Free-Surface Flow, Journal of Hydraulic Research, vol. 23, no. 3, pp. 415-444, 1994.

Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S., and Tan, W. Y., A Finite Volume Two-dimensional Unsteady Flow Model for River Basins, Journal of Hydraulic Engineering, ASCE, vol. 120, no. 7, pp. 863-883, 1994.

Zhao, D. H., Shen, H. W., Lai, J. S., and Tabios III, G. Q. Approximate Riemann Solvers in FVM for 2D Hydraulic Shock Wave Modeling, Journal of Hydraulic Engineering, ASCE, vol. 122, no. 12, pp. 692-702, 1996

[-]

This item appears in the following Collection(s)

Show full item record