- -

Simulación de flujos en canales abiertos con pendientes fuertes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Simulación de flujos en canales abiertos con pendientes fuertes

Show simple item record

Files in this item

dc.contributor.author Salaheldin, Tarek M. es_ES
dc.contributor.author Imran, Jasmin es_ES
dc.contributor.author Chaudhry, M. Hanif es_ES
dc.date.accessioned 2019-04-11T11:14:53Z
dc.date.available 2019-04-11T11:14:53Z
dc.date.issued 2000-12-31
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/119253
dc.description.abstract [ES] En el presente artículo se discute la simulación de flujos en canales abiertos con frentes pronunciados. Los métodos existentes en la literatura para representar este tipo de flujos son el método de las características, el de diferencias finitas, el de elementos finitos y el de volúmenes finitos. Se enuncian las ecuaciones de movimiento para el flujo en canales, promediadas verticalmente (para aguas someras) y transversalmente, haciéndose una breve discusión de las técnicas numéricas. Así mismo, se indican las condiciones iniciales y de contorno necesarias para completar la construcción de los modelos. Finalmente las técnicas anteriores son aplicadas al análisis de algunos problemas de flujo frecuentes en este campo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Onda de choque es_ES
dc.subject Bore es_ES
dc.subject Ecuaciones determinantes es_ES
dc.subject Características es_ES
dc.subject Diferencias finitas es_ES
dc.subject Elementos finitos es_ES
dc.subject Volúmenes finitos es_ES
dc.subject Aplicaciones es_ES
dc.subject Zonas áridas es_ES
dc.subject Zonas semiáridas es_ES
dc.subject Procesos hidrológicos es_ES
dc.subject Modelos matemáticos es_ES
dc.subject Ciclo hidrológico es_ES
dc.title Simulación de flujos en canales abiertos con pendientes fuertes es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-11T10:58:16Z
dc.identifier.doi 10.4995/ia.2000.2854
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Salaheldin, TM.; Imran, J.; Chaudhry, MH. (2000). Simulación de flujos en canales abiertos con pendientes fuertes. Ingeniería del Agua. 7(4):391-408. https://doi.org/10.4995/ia.2000.2854 es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2000.2854 es_ES
dc.description.upvformatpinicio 391 es_ES
dc.description.upvformatpfin 408 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7
dc.description.issue 4
dc.identifier.eissn 1886-4996
dc.relation.references Akanbi, A. A., and Katopodes, N. D., Model for Flood Propagation on Initially Dry land, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 7, pp. 689, 706, 1988. es_ES
dc.relation.references Alcrudo, F., and Garcia-Navarro, P., A High-Resolution Godunov-Type Scheme in Finite Volumes for the 2-D shallow Water Equations, International Journal of Numerical Methods in Fluids, vol. 16, pp 489-505, 1993. es_ES
dc.relation.references Anderson, D. A., Tannehill, J. D., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, McGraw Hill, New York, 1984. es_ES
dc.relation.references Bagge, G., and Herbich, J. B., Transitions in Supercritical Open Channel Flow, Journal of Hydraulic Division, ASCE, Vol. 93, No. 5, pp. 23-41, 1967. es_ES
dc.relation.references Baker, J. A., Finite Element Computational Fluid Dynamics, McGraw Hill, New York, NY, 1983. es_ES
dc.relation.references Basco, D. R., Introduction to Rapidly Varied Unsteady Free Surface Flow Computations, Water Resources Investigation Report, No. 83-4284, 1983. es_ES
dc.relation.references Beam, R. M., and Warming, R. F., An Explicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form, Journal of Computational Physics, vol. 22, pp. 87-110, 1976. es_ES
dc.relation.references Bellos, C. V, Soulis, J. V., and Sakkas, J. G., Computation of two-Dimensional Dam-Break induced Flows, Advances in Water Resources, vol. 14, no. 1, 31-41, 1991. es_ES
dc.relation.references Berger, R. C. Jr., A Finite Element Scheme for Shock Capturing, Technical Report, TR-93-12, U.S. Army Engineering Waterway Experiment Station, Vicksburg, Missorri, 1993. es_ES
dc.relation.references Berger, R. C., and Stockstill, R. L., Finite Element Model for High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 121, no. 10, pp. 710-716, 1995. es_ES
dc.relation.references Bhallamudi, S. M., and Chaudhry, M. H., Computation of Flows in Open-Channel Transitions, Journal of Hydraulic Research, vol. 1, pp. 77-93, 1992. es_ES
dc.relation.references Chaudhry, M. H., Applied Hydraulic Transients, 2nd edition, Van Nostrand Reinhold, New York, N.Y., 1987. es_ES
dc.relation.references Chaudhry, M. H., Open Channel Flow, Prentice Hall, Englewood Cliffs, NJ, 1993. es_ES
dc.relation.references Chaudhry, M. H., Computation of Open-Channel Flows with Shocks, 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, Mechanical Engineering Publication Limited, BHR Group, UK, 1996 es_ES
dc.relation.references Chaudhry, M. H., and Barber, M. E., Open Channel Flow, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998. es_ES
dc.relation.references Demuren, A. O., Prediction of Steady Surface-Layer Flows, Ph.D. thesis, University of London, 1979. es_ES
dc.relation.references Fennema, R. J., and Chaudhry, M. H., Explicit Methods for Two-dimensional unsteady Transient Free-Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 116, no. 4, pp. 1013-1034, 1990. es_ES
dc.relation.references Garcia, R., and Kahawita, R. A., Numerical Solution of the St. Venant Equations with MacCormack Finite Difference Scheme, International Journal Numerical Methods in Fluids, 6, 259-274, 1986. es_ES
dc.relation.references Gharangik, A., and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Journal of Hydraulic Engineering, ASCE, vol. 117, no. 9, pp. 1195-1211, 1991. es_ES
dc.relation.references Herbich, J. B., and Walsh, P., Supercritical flow in Rectangular expansions, Journal of Hydraulic Division, ASCE, vol. 98, no. 9, pp. 1691-1700, 1972. es_ES
dc.relation.references Jimenez, O.F. and Chaudhry, M. H., Computation of Supercritical free Surface Flows, Journal of Hydraulic Engineering, ASCE, vol. 114, no. 4, pp. 377-395, 1988. es_ES
dc.relation.references Jameson, A., Schmidt, W., and Turkel, E., Numerical Solutions of Euler Equations by Finite Volume Methods using Runge-Kutta time-stepping Schemes, AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259, 1981. es_ES
dc.relation.references Katopodes, H., and Strelkoff, T., Computing Two-dimensional Dam-Break Flood Waves, Journal of the Hydraulics Division, ASCE, vol. 104, no. 9, pp.1269-1288, 1978. es_ES
dc.relation.references Lee, J. K., and Froelich, D. C., Review of Literature on the Finite Element Solution of the equations of Two-di mensional Surface-Water Flow in Horizontal Plane, Circular:1009 U.S. Geological Survey, Denver, Colorado, USA, 1986. es_ES
dc.relation.references Lax, P. D., and Wendroff, B., Systems of Conservation Laws, Com. Pure Applied Mathematics, 13:217-37, 1960. es_ES
dc.relation.references Osher, S., and Solomone, F., Upwind difference Scheme for Hyperbolic Systems of Conservation Laws, Mathematical Computation, 38, pp. 339-374, 1982. es_ES
dc.relation.references Patankar, S. V., Karki, K. C., and Kelkar, K. M., Finite Volume Method, The Handbook of Fluid Dynamics, Edited by Johnson, R. W., CRC Press, New York, NY, 1998. es_ES
dc.relation.references Pepper, D. W., and Baker, A. J., Finite Differences versus Finite Elements, in Handbook of Numerical Heat Transfer, W. J. Minkowycz, E. M. Sparrow, G. E. Schneider and R. H. Pletcher, Eds, John Wilye & Sons, New York, 1988. es_ES
dc.relation.references Raman, A. and Chaudhry, M. H., Numerical Simulation of Hydraulic Jump, Proceeding, North America Water and Environment Congress 96, ASCE, 1996. es_ES
dc.relation.references Stockstill, R. L., Berger, R. C., and Nece, R. E., Two-dimensional Flow Model for Trapezoidal High-velocity Channels, Journal of Hydraulic Engineering, ASCE, vol. 123, no. 10, pp. 844-852, 1997. es_ES
dc.relation.references Stockstill, R. L., A Two-dimensional Free-surface Flow Model for Trapezoidal High-Velocity Channels, Ph.D. thesis, Department of Civil Engineering, University of Washington, Seattle, Washington, USA, 1995. es_ES
dc.relation.references Spekreijse, S. P., Multigrid Solution of Steady Euler Equations, CWI Tract, Amsterdam, The Netherlands, 1988. es_ES
dc.relation.references Tan, W., Shallo Water Hydrodynamics, Elsevier, Amsterdam, The Netherlands, 1992. es_ES
dc.relation.references Thompson, J., Numerical Modeling of Irregular Hydraulic Jumps, Proceeding of Hydraulic Engineering Conference, ASCE, pp. 749-754, 1990. es_ES
dc.relation.references Villegas, F., Design of the Punchina Spillway, Water Power Dam Construction, Nov. 32-34, 1976. es_ES
dc.relation.references Younus, M., and Chaudhry, M. H., A Depth averaged k-(turbulence Model for the Computation of Free-Surface Flow, Journal of Hydraulic Research, vol. 23, no. 3, pp. 415-444, 1994. es_ES
dc.relation.references Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S., and Tan, W. Y., A Finite Volume Two-dimensional Unsteady Flow Model for River Basins, Journal of Hydraulic Engineering, ASCE, vol. 120, no. 7, pp. 863-883, 1994. es_ES
dc.relation.references Zhao, D. H., Shen, H. W., Lai, J. S., and Tabios III, G. Q. Approximate Riemann Solvers in FVM for 2D Hydraulic Shock Wave Modeling, Journal of Hydraulic Engineering, ASCE, vol. 122, no. 12, pp. 692-702, 1996 es_ES


This item appears in the following Collection(s)

Show simple item record