- -

Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology

Show full item record

Ruiz Rico, M.; Pérez-Esteve, É.; De La Torre-Paredes, C.; Jiménez Belenguer, AI.; Quiles Chuliá, MD.; Marcos Martínez, MD.; Martínez-Máñez, R.... (2018). Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology. Journal of Food Science. 83(8):2140-2147. https://doi.org/10.1111/1750-3841.14211

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/119858

Files in this item

Item Metadata

Title: Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology
Author: Ruiz Rico, María Pérez-Esteve, Édgar De La Torre-Paredes, Cristina Jiménez Belenguer, Ana Isabel Quiles Chuliá, Mª Desamparados Marcos Martínez, María Dolores Martínez-Máñez, Ramón Barat Baviera, José Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Embargo end date: 2019-08-01
Abstract:
[EN] The objective of this work was on the one hand to assess the antibacterial activity of amines anchored to the external surface of mesoporous silica particles against Listeria monocytogenes in comparison with the same ...[+]
Subjects: Amine corona , Bactericidal activity , Listeria monocytogenes , Mesoporous silica nanoparticles , Surface functionalization , Electron Microscopy Service of the UPV
Copyrigths: Reserva de todos los derechos
Source:
Journal of Food Science. (issn: 0022-1147 )
DOI: 10.1111/1750-3841.14211
Publisher:
Blackwell Publishing
Publisher version: http://doi.org/10.1111/1750-3841.14211
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-1-R/ES/SISTEMAS HIBRIDOS BASADOS EN SOPORTES BIOCOMPATIBLES PARA EL DESARROLLO DE ANTIMICROBIANOS A PARTIR DE SUSTANCIAS NATURALES Y LIBERACION CONTROLADA DE COMPUESTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/MECD//AP2010-4369/ES/AP2010-4369/
Thanks:
Authors gratefully acknowledge the financial support from the Ministerio de Economia y Competitividad and FEDER-EU (Projects AGL2015-70235-C2-1-R, AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R [MINECO/FEDER]). M.R.R. is ...[+]
Type: Artículo

References

Al Shamsi, M., Al Samri, M. T., Al-Salam, S., Conca, W., Shaban, S., Benedict, S., … Souid, A.-K. (2010). Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chemical Research in Toxicology, 23(11), 1796-1805. doi:10.1021/tx100245j

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Baskaran, S. A., Amalaradjou, M. A. R., Hoagland, T., & Venkitanarayanan, K. (2010). Inactivation of Escherichia coli O157:H7 in apple juice and apple cider by trans-cinnamaldehyde. International Journal of Food Microbiology, 141(1-2), 126-129. doi:10.1016/j.ijfoodmicro.2010.04.002 [+]
Al Shamsi, M., Al Samri, M. T., Al-Salam, S., Conca, W., Shaban, S., Benedict, S., … Souid, A.-K. (2010). Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chemical Research in Toxicology, 23(11), 1796-1805. doi:10.1021/tx100245j

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Baskaran, S. A., Amalaradjou, M. A. R., Hoagland, T., & Venkitanarayanan, K. (2010). Inactivation of Escherichia coli O157:H7 in apple juice and apple cider by trans-cinnamaldehyde. International Journal of Food Microbiology, 141(1-2), 126-129. doi:10.1016/j.ijfoodmicro.2010.04.002

Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components againstAspergillus nigerwhen loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022

Botequim, D., Maia, J., Lino, M. M. F., Lopes, L. M. F., Simões, P. N., Ilharco, L. M., & Ferreira, L. (2012). Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties. Langmuir, 28(20), 7646-7656. doi:10.1021/la300948n

Capeletti, L. B., de Oliveira, L. F., Gonçalves, K. de A., de Oliveira, J. F. A., Saito, Â., Kobarg, J., … Cardoso, M. B. (2014). Tailored Silica–Antibiotic Nanoparticles: Overcoming Bacterial Resistance with Low Cytotoxicity. Langmuir, 30(25), 7456-7464. doi:10.1021/la4046435

Carpentier, B., & Cerf, O. (2011). Review — Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145(1), 1-8. doi:10.1016/j.ijfoodmicro.2011.01.005

Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. doi:10.1016/j.msec.2014.08.031

Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113(1), 1-15. doi:10.1016/j.ijfoodmicro.2006.07.008

Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., & Mitra, S. K. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522-530. doi:10.1016/j.apsusc.2014.03.130

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004

Huang, Y.-F., Wang, Y.-F., & Yan, X.-P. (2010). Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens. Environmental Science & Technology, 44(20), 7908-7913. doi:10.1021/es102285n

Huh, A. J., & Kwon, Y. J. (2011). «Nanoantibiotics»: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128-145. doi:10.1016/j.jconrel.2011.07.002

Li, L., & Wang, H. (2013). Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced Healthcare Materials, 2(10), 1351-1360. doi:10.1002/adhm.201300051

Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170

McLauchlin, J., Mitchell, R. ., Smerdon, W. ., & Jewell, K. (2004). Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. International Journal of Food Microbiology, 92(1), 15-33. doi:10.1016/s0168-1605(03)00326-x

Mittal, N., Samanta, A., Sarkar, P., & Gupta, R. (2015). Postcombustion CO2capture using N-(3-trimethoxysilylpropyl)diethylenetriamine-grafted solid adsorbent. Energy Science & Engineering, 3(3), 207-220. doi:10.1002/ese3.64

Molina-Manso, D., Manzano, M., Doadrio, J. C., Del Prado, G., Ortiz-Pérez, A., Vallet-Regí, M., … Esteban, J. (2012). Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. International Journal of Antimicrobial Agents, 40(3), 252-256. doi:10.1016/j.ijantimicag.2012.05.013

Ortuño, C., Quiles, A., & Benedito, J. (2014). Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International, 62, 955-964. doi:10.1016/j.foodres.2014.05.012

Palgan, I., Caminiti, I. M., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., … Lyng, J. G. (2011). Effectiveness of High Intensity Light Pulses (HILP) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiology, 28(1), 14-20. doi:10.1016/j.fm.2010.07.023

Park, S.-Y., Barton, M., & Pendleton, P. (2012). Controlled release of allyl isothiocyanate for bacteria growth management. Food Control, 23(2), 478-484. doi:10.1016/j.foodcont.2011.08.017

Pérez-Esteve, É., Oliver, L., García, L., Nieuwland, M., de Jongh, H. H. J., Martínez-Máñez, R., & Barat, J. M. (2014). Incorporation of Mesoporous Silica Particles in Gelatine Gels: Effect of Particle Type and Surface Modification on Physical Properties. Langmuir, 30(23), 6970-6979. doi:10.1021/la501206f

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017

Pérez-Esteve, É., Ruiz-Rico, M., Martínez-Máñez, R., & Barat, J. M. (2015). Mesoporous Silica-Based Supports for the Controlled and Targeted Release of Bioactive Molecules in the Gastrointestinal Tract. Journal of Food Science, 80(11), E2504-E2516. doi:10.1111/1750-3841.13095

Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d

Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016

Shah, P., Sridevi, N., Prabhune, A., & Ramaswamy, V. (2008). Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous and Mesoporous Materials, 116(1-3), 157-165. doi:10.1016/j.micromeso.2008.03.030

Singh, S., Barick, K. C., & Bahadur, D. (2011). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 192(3), 1539-1547. doi:10.1016/j.jhazmat.2011.06.074

SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012

Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763

Wehling, J., Volkmann, E., Grieb, T., Rosenauer, A., Maas, M., Treccani, L., & Rezwan, K. (2013). A critical study: Assessment of the effect of silica particles from 15 to 500 nm on bacterial viability. Environmental Pollution, 176, 292-299. doi:10.1016/j.envpol.2013.02.001

Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048

Zengin, N., Yüzbaşıoğlu, D., Ünal, F., Yılmaz, S., & Aksoy, H. (2011). The evaluation of the genotoxicity of two food preservatives: Sodium benzoate and potassium benzoate. Food and Chemical Toxicology, 49(4), 763-769. doi:10.1016/j.fct.2010.11.040

Zhan, S., Yang, Y., Shen, Z., Shan, J., Li, Y., Yang, S., & Zhu, D. (2014). Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. Journal of Hazardous Materials, 274, 115-123. doi:10.1016/j.jhazmat.2014.03.067

Zhao, Y., Sun, X., Zhang, G., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2011). Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects. ACS Nano, 5(2), 1366-1375. doi:10.1021/nn103077k

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record