- -

Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Rico, María es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author De La Torre-Paredes, Cristina es_ES
dc.contributor.author Jiménez Belenguer, Ana Isabel es_ES
dc.contributor.author Quiles Chuliá, Mª Desamparados es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.date.accessioned 2019-05-04T20:01:55Z
dc.date.available 2019-05-04T20:01:55Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0022-1147 es_ES
dc.identifier.uri http://hdl.handle.net/10251/119858
dc.description.abstract [EN] The objective of this work was on the one hand to assess the antibacterial activity of amines anchored to the external surface of mesoporous silica particles against Listeria monocytogenes in comparison with the same dose of free amines as well. It was also our aim to elucidate the mechanism of action of the new antimicrobial device. The suitability of silica nanoparticles to anchor, concentrate and improve the antimicrobial power of polyamines against L. monocytogenes has been demonstrated in a saline solution and in a food matrix. Moreover, through microscope observations it has been possible to determine that the attractive binding forces between the positive amine corona on the surface of nanoparticles and the negatively charged bacteria membrane provoke a disruption of the cell membrane. The surface concentration of amines on the surface of the nanoparticles is so effective that immobilized-amines were 100 times more effective in killing L. monocytogenes bacteria than the same amount of free polyamines. This novel approach for the creation of antimicrobial nanodevices opens the possibility to put in value the antimicrobial power of natural molecules that have been discarded because of its low antimicrobial power. Practical ApplicationConsumers demand for high-quality products, free from chemical preservatives, with an extended shelf-life. In this study, a really powerful antimicrobial agent based on a nanomaterial functionalized with a non-antimicrobial organic molecule was developed as a proof of concept. Following this approach it could be possible to develop a new generation of natural and removable antimicrobials based on their anchoring to functional surfaces for food, agricultural or medical purposes. es_ES
dc.description.sponsorship Authors gratefully acknowledge the financial support from the Ministerio de Economia y Competitividad and FEDER-EU (Projects AGL2015-70235-C2-1-R, AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R [MINECO/FEDER]). M.R.R. is grateful to the Ministerio de Educacion, Cultura y Deporte for her grant (AP2010-4369). The authors also thank the Electron Microscopy Service at the UPV for support. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of Food Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amine corona es_ES
dc.subject Bactericidal activity es_ES
dc.subject Listeria monocytogenes es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject Surface functionalization es_ES
dc.subject Electron Microscopy Service of the UPV es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/1750-3841.14211 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-1-R/ES/SISTEMAS HIBRIDOS BASADOS EN SOPORTES BIOCOMPATIBLES PARA EL DESARROLLO DE ANTIMICROBIANOS A PARTIR DE SUSTANCIAS NATURALES Y LIBERACION CONTROLADA DE COMPUESTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2010-4369/ES/AP2010-4369/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Ruiz Rico, M.; Pérez-Esteve, É.; De La Torre-Paredes, C.; Jiménez Belenguer, AI.; Quiles Chuliá, MD.; Marcos Martínez, MD.; Martínez-Máñez, R.... (2018). Improving the Antimicrobial Power of Low-Effective Antimicrobial Molecules Through Nanotechnology. Journal of Food Science. 83(8):2140-2147. https://doi.org/10.1111/1750-3841.14211 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1111/1750-3841.14211 es_ES
dc.description.upvformatpinicio 2140 es_ES
dc.description.upvformatpfin 2147 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 29979465
dc.relation.pasarela S\367517 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Al Shamsi, M., Al Samri, M. T., Al-Salam, S., Conca, W., Shaban, S., Benedict, S., … Souid, A.-K. (2010). Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chemical Research in Toxicology, 23(11), 1796-1805. doi:10.1021/tx100245j es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Baskaran, S. A., Amalaradjou, M. A. R., Hoagland, T., & Venkitanarayanan, K. (2010). Inactivation of Escherichia coli O157:H7 in apple juice and apple cider by trans-cinnamaldehyde. International Journal of Food Microbiology, 141(1-2), 126-129. doi:10.1016/j.ijfoodmicro.2010.04.002 es_ES
dc.description.references Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components againstAspergillus nigerwhen loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022 es_ES
dc.description.references Botequim, D., Maia, J., Lino, M. M. F., Lopes, L. M. F., Simões, P. N., Ilharco, L. M., & Ferreira, L. (2012). Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties. Langmuir, 28(20), 7646-7656. doi:10.1021/la300948n es_ES
dc.description.references Capeletti, L. B., de Oliveira, L. F., Gonçalves, K. de A., de Oliveira, J. F. A., Saito, Â., Kobarg, J., … Cardoso, M. B. (2014). Tailored Silica–Antibiotic Nanoparticles: Overcoming Bacterial Resistance with Low Cytotoxicity. Langmuir, 30(25), 7456-7464. doi:10.1021/la4046435 es_ES
dc.description.references Carpentier, B., & Cerf, O. (2011). Review — Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145(1), 1-8. doi:10.1016/j.ijfoodmicro.2011.01.005 es_ES
dc.description.references Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. doi:10.1016/j.msec.2014.08.031 es_ES
dc.description.references Gandhi, M., & Chikindas, M. L. (2007). Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, 113(1), 1-15. doi:10.1016/j.ijfoodmicro.2006.07.008 es_ES
dc.description.references Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., & Mitra, S. K. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522-530. doi:10.1016/j.apsusc.2014.03.130 es_ES
dc.description.references Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004 es_ES
dc.description.references Huang, Y.-F., Wang, Y.-F., & Yan, X.-P. (2010). Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens. Environmental Science & Technology, 44(20), 7908-7913. doi:10.1021/es102285n es_ES
dc.description.references Huh, A. J., & Kwon, Y. J. (2011). «Nanoantibiotics»: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128-145. doi:10.1016/j.jconrel.2011.07.002 es_ES
dc.description.references Li, L., & Wang, H. (2013). Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced Healthcare Materials, 2(10), 1351-1360. doi:10.1002/adhm.201300051 es_ES
dc.description.references Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170 es_ES
dc.description.references McLauchlin, J., Mitchell, R. ., Smerdon, W. ., & Jewell, K. (2004). Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. International Journal of Food Microbiology, 92(1), 15-33. doi:10.1016/s0168-1605(03)00326-x es_ES
dc.description.references Mittal, N., Samanta, A., Sarkar, P., & Gupta, R. (2015). Postcombustion CO2capture using N-(3-trimethoxysilylpropyl)diethylenetriamine-grafted solid adsorbent. Energy Science & Engineering, 3(3), 207-220. doi:10.1002/ese3.64 es_ES
dc.description.references Molina-Manso, D., Manzano, M., Doadrio, J. C., Del Prado, G., Ortiz-Pérez, A., Vallet-Regí, M., … Esteban, J. (2012). Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. International Journal of Antimicrobial Agents, 40(3), 252-256. doi:10.1016/j.ijantimicag.2012.05.013 es_ES
dc.description.references Ortuño, C., Quiles, A., & Benedito, J. (2014). Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International, 62, 955-964. doi:10.1016/j.foodres.2014.05.012 es_ES
dc.description.references Palgan, I., Caminiti, I. M., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., … Lyng, J. G. (2011). Effectiveness of High Intensity Light Pulses (HILP) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiology, 28(1), 14-20. doi:10.1016/j.fm.2010.07.023 es_ES
dc.description.references Park, S.-Y., Barton, M., & Pendleton, P. (2012). Controlled release of allyl isothiocyanate for bacteria growth management. Food Control, 23(2), 478-484. doi:10.1016/j.foodcont.2011.08.017 es_ES
dc.description.references Pérez-Esteve, É., Oliver, L., García, L., Nieuwland, M., de Jongh, H. H. J., Martínez-Máñez, R., & Barat, J. M. (2014). Incorporation of Mesoporous Silica Particles in Gelatine Gels: Effect of Particle Type and Surface Modification on Physical Properties. Langmuir, 30(23), 6970-6979. doi:10.1021/la501206f es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017 es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., Martínez-Máñez, R., & Barat, J. M. (2015). Mesoporous Silica-Based Supports for the Controlled and Targeted Release of Bioactive Molecules in the Gastrointestinal Tract. Journal of Food Science, 80(11), E2504-E2516. doi:10.1111/1750-3841.13095 es_ES
dc.description.references Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d es_ES
dc.description.references Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016 es_ES
dc.description.references Shah, P., Sridevi, N., Prabhune, A., & Ramaswamy, V. (2008). Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous and Mesoporous Materials, 116(1-3), 157-165. doi:10.1016/j.micromeso.2008.03.030 es_ES
dc.description.references Singh, S., Barick, K. C., & Bahadur, D. (2011). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 192(3), 1539-1547. doi:10.1016/j.jhazmat.2011.06.074 es_ES
dc.description.references SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012 es_ES
dc.description.references Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763 es_ES
dc.description.references Wehling, J., Volkmann, E., Grieb, T., Rosenauer, A., Maas, M., Treccani, L., & Rezwan, K. (2013). A critical study: Assessment of the effect of silica particles from 15 to 500 nm on bacterial viability. Environmental Pollution, 176, 292-299. doi:10.1016/j.envpol.2013.02.001 es_ES
dc.description.references Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048 es_ES
dc.description.references Zengin, N., Yüzbaşıoğlu, D., Ünal, F., Yılmaz, S., & Aksoy, H. (2011). The evaluation of the genotoxicity of two food preservatives: Sodium benzoate and potassium benzoate. Food and Chemical Toxicology, 49(4), 763-769. doi:10.1016/j.fct.2010.11.040 es_ES
dc.description.references Zhan, S., Yang, Y., Shen, Z., Shan, J., Li, Y., Yang, S., & Zhu, D. (2014). Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. Journal of Hazardous Materials, 274, 115-123. doi:10.1016/j.jhazmat.2014.03.067 es_ES
dc.description.references Zhao, Y., Sun, X., Zhang, G., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2011). Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects. ACS Nano, 5(2), 1366-1375. doi:10.1021/nn103077k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem