- -

Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality

Mostrar el registro completo del ítem

Rogríguez, Ó.; Eim, VS.; Roselló Matas, C.; Femenía, A.; Carcel Carrión, JA.; Simal, S. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture. 98(5):1660-1673. https://doi.org/10.1002/jsfa.8673

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120138

Ficheros en el ítem

Metadatos del ítem

Título: Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality
Autor: Rogríguez, Óscar Eim, Valeria S. Roselló Matas, Carmen Femenía, Antonio Carcel Carrión, Juan Andrés Simal, Susana
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. ...[+]
Palabras clave: Ultrasound , Drying , Pretreatment , Quality , Fruits , Vegetables
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.8673
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/jsfa.8673
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/
Descripción: This is the peer reviewed version of the following article:Rogríguez, Óscar, Eim, Valeria S., Roselló Matas, Carmen, Femenía, Antonio, Carcel Carrión, Juan Andrés, Simal, Susana. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.Journal of the Science of Food and Agriculture, 98, 5, 1660-1673. DOI: 10.1002/jsfa.8673, which has been published in final form at http://doi.org/10.1002/jsfa.8673. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
We thank Conselleria d'Agricultura, Medi Ambient i Territori and Fons de Garantia Agraria i Pesquera de les Illes Balears (FOGAIBA) and the Spanish Government (MEIC) for financial support (RTA2015-00060-C04, AIA01/15).
Tipo: Artículo

References

Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7

Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2014). Drying Assisted by Power Ultrasound. Modern Drying Technology, 237-278. doi:10.1002/9783527631704.ch08

Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & Garcia-Perez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21(3), 1235-1243. doi:10.1016/j.ultsonch.2013.12.015 [+]
Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7

Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2014). Drying Assisted by Power Ultrasound. Modern Drying Technology, 237-278. doi:10.1002/9783527631704.ch08

Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & Garcia-Perez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21(3), 1235-1243. doi:10.1016/j.ultsonch.2013.12.015

Venkatesh, M. S., & Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, 88(1), 1-18. doi:10.1016/j.biosystemseng.2004.01.007

Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89-106. doi:10.1007/s12393-012-9048-x

Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328. doi:10.1016/j.tifs.2008.04.001

Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85-94. doi:10.1016/j.ifset.2013.03.003

Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. doi:10.1016/s0924-2244(01)00095-4

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. doi:10.1016/j.ultsonch.2010.11.023

Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261-267. doi:10.1016/j.jfoodeng.2007.02.032

Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200-207. doi:10.1016/j.jfoodeng.2011.05.038

Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054. doi:10.1016/j.ultsonch.2008.03.009

García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010

Mason, T. J., Riera, E., Vercet, A., & Lopez-Buesa, P. (2005). Application of Ultrasound. Emerging Technologies for Food Processing, 323-351. doi:10.1016/b978-012676757-5/50015-3

Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. doi:10.1016/j.tifs.2010.04.003

Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2), 593-606. doi:10.1016/j.foodcont.2012.11.039

Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495-506. doi:10.1016/j.fbp.2013.05.003

Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. doi:10.1016/j.foodres.2016.09.030

Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. doi:10.1007/s00217-012-1726-7

Romero J., C. A., & Yépez V., B. D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205-210. doi:10.1016/j.ultsonch.2014.06.011

Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027

Rodríguez, Ó., Llabrés, P. J., Simal, S., Femenia, A., & Rosselló, C. (2014). Intensification of Predrying Treatments by Means of Ultrasonic Assistance: Effects on Water Mobility, PPO Activity, Microstructure, and Drying Kinetics of Apple. Food and Bioprocess Technology, 8(3), 503-515. doi:10.1007/s11947-014-1424-5

Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi:10.1016/j.jfoodeng.2006.10.009

Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 604-610. doi:10.1016/j.lwt.2007.05.007

Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150. doi:10.1016/j.ultsonch.2014.02.013

Yao, Y. (2016). Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 512-531. doi:10.1016/j.ultsonch.2016.01.039

Oladejo, A. O., & Ma, H. (2016). Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology. Journal of the Science of Food and Agriculture, 96(11), 3688-3693. doi:10.1002/jsfa.7552

Fernandes, F. A. N., & Rodrigues, S. (2017). Osmotic Dehydration and Blanching. Ultrasound in Food Processing, 311-328. doi:10.1002/9781118964156.ch11

Azoubel, P. M., Baima, M. do A. M., Amorim, M. da R., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194-198. doi:10.1016/j.jfoodeng.2009.10.009

Rodríguez, Ó., Gomes, W., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102. doi:10.1016/j.ultsonch.2016.09.006

Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2015). Ultrasound as a Pretreatment Method to Improve Drying Kinetics and Sensory Properties of Dried Apple. Journal of Food Process Engineering, 39(3), 256-265. doi:10.1111/jfpe.12217

Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi:10.1016/j.jfoodeng.2012.06.013

Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101(3), 898-906. doi:10.1016/j.foodchem.2006.02.044

Siucińska, K., Mieszczakowska-Frąc, M., Połubok, A., & Konopacka, D. (2016). Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries. Journal of Food Science, 81(7), C1654-C1661. doi:10.1111/1750-3841.13368

Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 4(4), 610-615. doi:10.1007/s11947-010-0351-3

Çakmak, R. Ş., Tekeoğlu, O., Bozkır, H., Ergün, A. R., & Baysal, T. (2016). Effects of electrical and sonication pretreatments on the drying rate and quality of mushrooms. LWT - Food Science and Technology, 69, 197-202. doi:10.1016/j.lwt.2016.01.032

Azoubel, P. M., da Rocha Amorim, M., Oliveira, S. S. B., Maciel, M. I. S., & Rodrigues, J. D. (2015). Improvement of Water Transport and Carotenoid Retention During Drying of Papaya by Applying Ultrasonic Osmotic Pretreatment. Food Engineering Reviews, 7(2), 185-192. doi:10.1007/s12393-015-9120-4

Mothibe, K. J., Zhang, M., Mujumdar, A. S., Wang, Y. C., & Cheng, X. (2014). Effects of Ultrasound and Microwave Pretreatments of Apple Before Spouted Bed Drying on Rate of Dehydration and Physical Properties. Drying Technology, 32(15), 1848-1856. doi:10.1080/07373937.2014.952381

Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi:10.1016/j.ultsonch.2011.03.009

Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J., & Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry ( Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 310-318. doi:10.1016/j.ultsonch.2016.01.012

Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., & Witrowa-Rajchert, D. (2016). The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103, 148-156. doi:10.1016/j.apacoust.2015.05.006

Dias da Silva, G., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Rupert Brandão, S. C., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. LWT, 74, 114-119. doi:10.1016/j.lwt.2016.07.039

Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472-479. doi:10.1016/j.jfoodeng.2005.10.018

Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402

Kowalski, S. J., Szadzińska, J., & Pawłowski, A. (2015). Ultrasonic-Assisted Osmotic Dehydration of Carrot Followed by Convective Drying with Continuous and Intermittent Heating. Drying Technology, 33(13), 1570-1580. doi:10.1080/07373937.2015.1012265

Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi:10.1016/j.jfoodeng.2008.06.021

Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14

Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021

Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1-9. doi:10.1016/j.jfoodeng.2015.01.023

Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-Assisted Convective Drying of Apple Slices. Drying Technology, 30(9), 989-997. doi:10.1080/07373937.2012.677083

Cárcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2011). Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 29(2), 174-182. doi:10.1080/07373937.2010.483032

Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006

Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371

Frias, J., Peñas, E., Ullate, M., & Vidal-Valverde, C. (2010). Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. Journal of Agricultural and Food Chemistry, 58(19), 10539-10544. doi:10.1021/jf102797y

Kowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233. doi:10.1016/j.ifset.2016.02.006

Schössler, K., Thomas, T., & Knorr, D. (2012). Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Research International, 49(1), 425-431. doi:10.1016/j.foodres.2012.07.027

Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103-110. doi:10.1016/j.jfoodeng.2011.07.018

Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113-120. doi:10.1016/j.ifset.2012.05.010

García-Pérez JV Carcel JA Mulet A Riera E Gallego-Juarez JA Ultrasonic drying for food preservation Power Ultrasonics Woodhead Publishing Oxford 875 910 2015

Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533

Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001

Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003

Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511-2517. doi:10.1002/jsfa.4344

Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445

Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0

Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I., & Garcia-Perez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624-632. doi:10.1016/j.fbp.2012.07.001

Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001

Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015

Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074. doi:10.1016/j.ijheatmasstransfer.2016.08.001

Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030

Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Carneiro, A. P. G., Miguel, E. de C., Cavada, B. S., … Rodrigues, S. (2016). Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrasonics Sonochemistry, 31, 237-249. doi:10.1016/j.ultsonch.2016.01.003

Boukouvalas, C. J., Krokida, M. K., Maroulis, Z. B., & Marinos-Kouris, D. (2006). Density and Porosity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties, 9(4), 715-746. doi:10.1080/10942910600575690

Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008

Chen, Z.-G., Guo, X.-Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28-34. doi:10.1016/j.ultsonch.2015.11.026

Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010

Musielak, G., Mierzwa, D., & Kroehnke, J. (2016). Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 126-141. doi:10.1016/j.tifs.2016.08.003

Kowalski, S. J., & Szadzińska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification, 82, 65-70. doi:10.1016/j.cep.2014.05.006

Pérez-Jiménez, J., Díaz-Rubio, M. E., & Saura-Calixto, F. (2014). Non-Extractable Polyphenols in Plant Foods. Polyphenols in Plants, 203-218. doi:10.1016/b978-0-12-397934-6.00010-3

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi:10.1038/nprot.2007.102

Gamboa-Santos, J., Soria, A. C., Villamiel, M., & Montilla, A. (2013). Quality parameters in convective dehydrated carrots blanched by ultrasound and conventional treatment. Food Chemistry, 141(1), 616-624. doi:10.1016/j.foodchem.2013.03.028

Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2015). Effect of ultrasound pre-treatment on the drying kinetics of brown seaweed Ascophyllum nodosum. Ultrasonics Sonochemistry, 23, 302-307. doi:10.1016/j.ultsonch.2014.10.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem