Mostrar el registro sencillo del ítem
dc.contributor.author | Lario-Femenía, Joan | es_ES |
dc.contributor.author | Fombuena, Vicent | es_ES |
dc.contributor.author | Vicente-Escuder, Ángel | es_ES |
dc.contributor.author | Amigó, Vicente | es_ES |
dc.date.accessioned | 2019-05-08T20:31:22Z | |
dc.date.available | 2019-05-08T20:31:22Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120139 | |
dc.description.abstract | [EN] The implant osseointegration rate depends on the surface¿s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation) on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM), and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS). The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV) irradiation of the TiO2 nanotubes decrease the water contact angle. | es_ES |
dc.description.sponsorship | The authors wish to thank the Spanish Ministry of Economy and Competitiveness for the financially supportting Research Project MAT2014-53764-C3-1-R, the Generalitat Valenciana for support through PROMETEO 2016/040, the European Commission for FEDER funds that have allowed equipment to be purchased for research purposes, and also the Microscopy Service at the Polytechnic University of Valencia (UPV). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Metals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Beta titanium alloys | es_ES |
dc.subject | TiO2 nanotubes | es_ES |
dc.subject | Surface modification | es_ES |
dc.subject | UV irradiation | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/met8010037 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Lario-Femenía, J.; Fombuena, V.; Vicente-Escuder, Á.; Amigó, V. (2018). Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes. Metals. 8(1):37-49. https://doi.org/10.3390/met8010037 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/met8010037 | es_ES |
dc.description.upvformatpinicio | 37 | es_ES |
dc.description.upvformatpfin | 49 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2075-4701 | es_ES |
dc.relation.pasarela | S\350344 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, Á., Segovia-López, F., & Amigó-Borrás, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia, 52(4), 084. doi:10.3989/revmetalm.084 | es_ES |
dc.description.references | Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x | es_ES |
dc.description.references | Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4 | es_ES |
dc.description.references | Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 | es_ES |
dc.description.references | Cochran, D. L., Schenk, R. K., Lussi, A., Higginbottom, F. L., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1-11. doi:10.1002/(sici)1097-4636(199804)40:1<1::aid-jbm1>3.0.co;2-q | es_ES |
dc.description.references | Gil, F. J., Manzanares, N., Badet, A., Aparicio, C., & Ginebra, M.-P. (2013). Biomimetic treatment on dental implants for short-term bone regeneration. Clinical Oral Investigations, 18(1), 59-66. doi:10.1007/s00784-013-0953-z | es_ES |
dc.description.references | Tan, A. W., Pingguan-Murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421-4435. doi:10.1016/j.ceramint.2012.03.002 | es_ES |
dc.description.references | Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 8(8), 2875-2888. doi:10.1016/j.actbio.2012.04.005 | es_ES |
dc.description.references | ELIAS, C., OSHIDA, Y., LIMA, J., & MULLER, C. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the Mechanical Behavior of Biomedical Materials, 1(3), 234-242. doi:10.1016/j.jmbbm.2007.12.002 | es_ES |
dc.description.references | Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. van der, & Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215-3223. doi:10.1016/j.actbio.2009.05.008 | es_ES |
dc.description.references | Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P. D., & Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Journal of Biomedical Materials Research Part A, 101(12), 3416-3430. doi:10.1002/jbm.a.34638 | es_ES |
dc.description.references | Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., & Martelet, C. (2003). Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C, 23(4), 551-560. doi:10.1016/s0928-4931(03)00033-x | es_ES |
dc.description.references | Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11-21. doi:10.1016/j.biomaterials.2004.02.005 | es_ES |
dc.description.references | Huang, H.-H., Wu, C.-P., Sun, Y.-S., & Lee, T.-H. (2013). Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment. Thin Solid Films, 528, 157-162. doi:10.1016/j.tsf.2012.08.063 | es_ES |
dc.description.references | Eisenbarth, E., Velten, D., Müller, M., Thull, R., & Breme, J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705-5713. doi:10.1016/j.biomaterials.2004.01.021 | es_ES |
dc.description.references | Bauer, S., Pittrof, A., Tsuchiya, H., & Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 13(6), 538-541. doi:10.1016/j.elecom.2011.03.003 | es_ES |
dc.description.references | Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research Part A, 90A(1), 225-237. doi:10.1002/jbm.a.32088 | es_ES |
dc.description.references | Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494-502. doi:10.1016/j.actbio.2014.10.017 | es_ES |
dc.description.references | Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004 | es_ES |
dc.description.references | Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706-713. doi:10.1016/j.biomaterials.2009.09.081 | es_ES |
dc.description.references | Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering: C, 35, 100-105. doi:10.1016/j.msec.2013.10.033 | es_ES |
dc.description.references | Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025 | es_ES |
dc.description.references | Chen, J., Zhang, Z., Ouyang, J., Chen, X., Xu, Z., & Sun, X. (2014). Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Applied Surface Science, 305, 24-32. doi:10.1016/j.apsusc.2014.02.148 | es_ES |
dc.description.references | WEN, H. B., LIU, Q., DE WIJN, J. R., DE GROOT, K., & CUI, F. Z. (1998). Journal of Materials Science Materials in Medicine, 9(3), 121-128. doi:10.1023/a:1008859417664 | es_ES |
dc.description.references | Bharathidasan, T., Narayanan, T. N., Sathyanaryanan, S., & Sreejakumari, S. S. (2015). Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon, 84, 207-213. doi:10.1016/j.carbon.2014.12.004 | es_ES |
dc.description.references | Yao, W., Li, Y., & Huang, X. (2014). Fluorinated poly(meth)acrylate: Synthesis and properties. Polymer, 55(24), 6197-6211. doi:10.1016/j.polymer.2014.09.036 | es_ES |
dc.description.references | Zha, J., Ali, S. S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., … Alekseiko, L. N. (2017). Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 200, 123-132. doi:10.1016/j.jfluchem.2017.06.011 | es_ES |
dc.description.references | Peters, A. M., Pirat, C., Sbragaglia, M., Borkent, B. M., Wessling, M., Lohse, D., & Lammertink, R. G. H. (2009). Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity. The European Physical Journal E, 29(4), 391-397. doi:10.1140/epje/i2009-10489-3 | es_ES |
dc.description.references | Giacomello, A., Meloni, S., Chinappi, M., & Casciola, C. M. (2012). Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir, 28(29), 10764-10772. doi:10.1021/la3018453 | es_ES |
dc.description.references | Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1998). Photogeneration of Highly Amphiphilic TiO2 Surfaces. Advanced Materials, 10(2), 135-138. doi:10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m | es_ES |
dc.description.references | Liu, Z., Wang, Y., Peng, X., Li, Y., Liu, Z., Liu, C., … Huang, Y. (2012). Photoinduced superhydrophilicity of TiO2thin film with hierarchical Cu doping. Science and Technology of Advanced Materials, 13(2), 025001. doi:10.1088/1468-6996/13/2/025001 | es_ES |
dc.description.references | Liu, Y., Lin, Z., Lin, W., Moon, K. S., & Wong, C. P. (2012). Reversible Superhydrophobic–Superhydrophilic Transition of ZnO Nanorod/Epoxy Composite Films. ACS Applied Materials & Interfaces, 4(8), 3959-3964. doi:10.1021/am300778d | es_ES |
dc.description.references | Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1997). Light-induced amphiphilic surfaces. Nature, 388(6641), 431-432. doi:10.1038/41233 | es_ES |
dc.description.references | Zhao, Y., Xiong, T., & Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Applied Surface Science, 256(10), 3073-3076. doi:10.1016/j.apsusc.2009.11.075 | es_ES |
dc.description.references | Mohan, L., Anandan, C., & Rajendran, N. (2015). Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Materials Science and Engineering: C, 50, 394-401. doi:10.1016/j.msec.2015.02.013 | es_ES |
dc.description.references | Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., & Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005. doi:10.1002/sia.3683 | es_ES |