- -

Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

Show simple item record

Files in this item

dc.contributor.author Lario-Femenía, Joan es_ES
dc.contributor.author Fombuena, Vicent es_ES
dc.contributor.author Vicente-Escuder, Ángel es_ES
dc.contributor.author Amigó, Vicente es_ES
dc.date.accessioned 2019-05-08T20:31:22Z
dc.date.available 2019-05-08T20:31:22Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120139
dc.description.abstract [EN] The implant osseointegration rate depends on the surface¿s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation) on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM), and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS). The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV) irradiation of the TiO2 nanotubes decrease the water contact angle. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministry of Economy and Competitiveness for the financially supportting Research Project MAT2014-53764-C3-1-R, the Generalitat Valenciana for support through PROMETEO 2016/040, the European Commission for FEDER funds that have allowed equipment to be purchased for research purposes, and also the Microscopy Service at the Polytechnic University of Valencia (UPV). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Metals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Beta titanium alloys es_ES
dc.subject TiO2 nanotubes es_ES
dc.subject Surface modification es_ES
dc.subject UV irradiation es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/met8010037 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Lario-Femenía, J.; Fombuena, V.; Vicente-Escuder, Á.; Amigó, V. (2018). Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes. Metals. 8(1):37-49. https://doi.org/10.3390/met8010037 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/met8010037 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 49 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2075-4701 es_ES
dc.relation.pasarela S\350344 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, Á., Segovia-López, F., & Amigó-Borrás, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia, 52(4), 084. doi:10.3989/revmetalm.084 es_ES
dc.description.references Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x es_ES
dc.description.references Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4 es_ES
dc.description.references Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 es_ES
dc.description.references Cochran, D. L., Schenk, R. K., Lussi, A., Higginbottom, F. L., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1-11. doi:10.1002/(sici)1097-4636(199804)40:1<1::aid-jbm1>3.0.co;2-q es_ES
dc.description.references Gil, F. J., Manzanares, N., Badet, A., Aparicio, C., & Ginebra, M.-P. (2013). Biomimetic treatment on dental implants for short-term bone regeneration. Clinical Oral Investigations, 18(1), 59-66. doi:10.1007/s00784-013-0953-z es_ES
dc.description.references Tan, A. W., Pingguan-Murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421-4435. doi:10.1016/j.ceramint.2012.03.002 es_ES
dc.description.references Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 8(8), 2875-2888. doi:10.1016/j.actbio.2012.04.005 es_ES
dc.description.references ELIAS, C., OSHIDA, Y., LIMA, J., & MULLER, C. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the Mechanical Behavior of Biomedical Materials, 1(3), 234-242. doi:10.1016/j.jmbbm.2007.12.002 es_ES
dc.description.references Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. van der, & Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215-3223. doi:10.1016/j.actbio.2009.05.008 es_ES
dc.description.references Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P. D., & Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Journal of Biomedical Materials Research Part A, 101(12), 3416-3430. doi:10.1002/jbm.a.34638 es_ES
dc.description.references Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., & Martelet, C. (2003). Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C, 23(4), 551-560. doi:10.1016/s0928-4931(03)00033-x es_ES
dc.description.references Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11-21. doi:10.1016/j.biomaterials.2004.02.005 es_ES
dc.description.references Huang, H.-H., Wu, C.-P., Sun, Y.-S., & Lee, T.-H. (2013). Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment. Thin Solid Films, 528, 157-162. doi:10.1016/j.tsf.2012.08.063 es_ES
dc.description.references Eisenbarth, E., Velten, D., Müller, M., Thull, R., & Breme, J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705-5713. doi:10.1016/j.biomaterials.2004.01.021 es_ES
dc.description.references Bauer, S., Pittrof, A., Tsuchiya, H., & Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 13(6), 538-541. doi:10.1016/j.elecom.2011.03.003 es_ES
dc.description.references Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research Part A, 90A(1), 225-237. doi:10.1002/jbm.a.32088 es_ES
dc.description.references Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494-502. doi:10.1016/j.actbio.2014.10.017 es_ES
dc.description.references Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004 es_ES
dc.description.references Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706-713. doi:10.1016/j.biomaterials.2009.09.081 es_ES
dc.description.references Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering: C, 35, 100-105. doi:10.1016/j.msec.2013.10.033 es_ES
dc.description.references Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025 es_ES
dc.description.references Chen, J., Zhang, Z., Ouyang, J., Chen, X., Xu, Z., & Sun, X. (2014). Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Applied Surface Science, 305, 24-32. doi:10.1016/j.apsusc.2014.02.148 es_ES
dc.description.references WEN, H. B., LIU, Q., DE WIJN, J. R., DE GROOT, K., & CUI, F. Z. (1998). Journal of Materials Science Materials in Medicine, 9(3), 121-128. doi:10.1023/a:1008859417664 es_ES
dc.description.references Bharathidasan, T., Narayanan, T. N., Sathyanaryanan, S., & Sreejakumari, S. S. (2015). Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon, 84, 207-213. doi:10.1016/j.carbon.2014.12.004 es_ES
dc.description.references Yao, W., Li, Y., & Huang, X. (2014). Fluorinated poly(meth)acrylate: Synthesis and properties. Polymer, 55(24), 6197-6211. doi:10.1016/j.polymer.2014.09.036 es_ES
dc.description.references Zha, J., Ali, S. S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., … Alekseiko, L. N. (2017). Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 200, 123-132. doi:10.1016/j.jfluchem.2017.06.011 es_ES
dc.description.references Peters, A. M., Pirat, C., Sbragaglia, M., Borkent, B. M., Wessling, M., Lohse, D., & Lammertink, R. G. H. (2009). Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity. The European Physical Journal E, 29(4), 391-397. doi:10.1140/epje/i2009-10489-3 es_ES
dc.description.references Giacomello, A., Meloni, S., Chinappi, M., & Casciola, C. M. (2012). Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir, 28(29), 10764-10772. doi:10.1021/la3018453 es_ES
dc.description.references Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1998). Photogeneration of Highly Amphiphilic TiO2 Surfaces. Advanced Materials, 10(2), 135-138. doi:10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m es_ES
dc.description.references Liu, Z., Wang, Y., Peng, X., Li, Y., Liu, Z., Liu, C., … Huang, Y. (2012). Photoinduced superhydrophilicity of TiO2thin film with hierarchical Cu doping. Science and Technology of Advanced Materials, 13(2), 025001. doi:10.1088/1468-6996/13/2/025001 es_ES
dc.description.references Liu, Y., Lin, Z., Lin, W., Moon, K. S., & Wong, C. P. (2012). Reversible Superhydrophobic–Superhydrophilic Transition of ZnO Nanorod/Epoxy Composite Films. ACS Applied Materials & Interfaces, 4(8), 3959-3964. doi:10.1021/am300778d es_ES
dc.description.references Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1997). Light-induced amphiphilic surfaces. Nature, 388(6641), 431-432. doi:10.1038/41233 es_ES
dc.description.references Zhao, Y., Xiong, T., & Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Applied Surface Science, 256(10), 3073-3076. doi:10.1016/j.apsusc.2009.11.075 es_ES
dc.description.references Mohan, L., Anandan, C., & Rajendran, N. (2015). Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Materials Science and Engineering: C, 50, 394-401. doi:10.1016/j.msec.2015.02.013 es_ES
dc.description.references Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., & Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005. doi:10.1002/sia.3683 es_ES


This item appears in the following Collection(s)

Show simple item record