Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, Á., Segovia-López, F., & Amigó-Borrás, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia, 52(4), 084. doi:10.3989/revmetalm.084
Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x
Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4
[+]
Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, Á., Segovia-López, F., & Amigó-Borrás, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia, 52(4), 084. doi:10.3989/revmetalm.084
Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x
Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4
Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001
Cochran, D. L., Schenk, R. K., Lussi, A., Higginbottom, F. L., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1-11. doi:10.1002/(sici)1097-4636(199804)40:1<1::aid-jbm1>3.0.co;2-q
Gil, F. J., Manzanares, N., Badet, A., Aparicio, C., & Ginebra, M.-P. (2013). Biomimetic treatment on dental implants for short-term bone regeneration. Clinical Oral Investigations, 18(1), 59-66. doi:10.1007/s00784-013-0953-z
Tan, A. W., Pingguan-Murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421-4435. doi:10.1016/j.ceramint.2012.03.002
Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 8(8), 2875-2888. doi:10.1016/j.actbio.2012.04.005
ELIAS, C., OSHIDA, Y., LIMA, J., & MULLER, C. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the Mechanical Behavior of Biomedical Materials, 1(3), 234-242. doi:10.1016/j.jmbbm.2007.12.002
Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. van der, & Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215-3223. doi:10.1016/j.actbio.2009.05.008
Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P. D., & Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Journal of Biomedical Materials Research Part A, 101(12), 3416-3430. doi:10.1002/jbm.a.34638
Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., & Martelet, C. (2003). Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C, 23(4), 551-560. doi:10.1016/s0928-4931(03)00033-x
Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11-21. doi:10.1016/j.biomaterials.2004.02.005
Huang, H.-H., Wu, C.-P., Sun, Y.-S., & Lee, T.-H. (2013). Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment. Thin Solid Films, 528, 157-162. doi:10.1016/j.tsf.2012.08.063
Eisenbarth, E., Velten, D., Müller, M., Thull, R., & Breme, J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705-5713. doi:10.1016/j.biomaterials.2004.01.021
Bauer, S., Pittrof, A., Tsuchiya, H., & Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 13(6), 538-541. doi:10.1016/j.elecom.2011.03.003
Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research Part A, 90A(1), 225-237. doi:10.1002/jbm.a.32088
Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494-502. doi:10.1016/j.actbio.2014.10.017
Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004
Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706-713. doi:10.1016/j.biomaterials.2009.09.081
Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering: C, 35, 100-105. doi:10.1016/j.msec.2013.10.033
Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025
Chen, J., Zhang, Z., Ouyang, J., Chen, X., Xu, Z., & Sun, X. (2014). Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Applied Surface Science, 305, 24-32. doi:10.1016/j.apsusc.2014.02.148
WEN, H. B., LIU, Q., DE WIJN, J. R., DE GROOT, K., & CUI, F. Z. (1998). Journal of Materials Science Materials in Medicine, 9(3), 121-128. doi:10.1023/a:1008859417664
Bharathidasan, T., Narayanan, T. N., Sathyanaryanan, S., & Sreejakumari, S. S. (2015). Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon, 84, 207-213. doi:10.1016/j.carbon.2014.12.004
Yao, W., Li, Y., & Huang, X. (2014). Fluorinated poly(meth)acrylate: Synthesis and properties. Polymer, 55(24), 6197-6211. doi:10.1016/j.polymer.2014.09.036
Zha, J., Ali, S. S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., … Alekseiko, L. N. (2017). Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 200, 123-132. doi:10.1016/j.jfluchem.2017.06.011
Peters, A. M., Pirat, C., Sbragaglia, M., Borkent, B. M., Wessling, M., Lohse, D., & Lammertink, R. G. H. (2009). Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity. The European Physical Journal E, 29(4), 391-397. doi:10.1140/epje/i2009-10489-3
Giacomello, A., Meloni, S., Chinappi, M., & Casciola, C. M. (2012). Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir, 28(29), 10764-10772. doi:10.1021/la3018453
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1998). Photogeneration of Highly Amphiphilic TiO2 Surfaces. Advanced Materials, 10(2), 135-138. doi:10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m
Liu, Z., Wang, Y., Peng, X., Li, Y., Liu, Z., Liu, C., … Huang, Y. (2012). Photoinduced superhydrophilicity of TiO2thin film with hierarchical Cu doping. Science and Technology of Advanced Materials, 13(2), 025001. doi:10.1088/1468-6996/13/2/025001
Liu, Y., Lin, Z., Lin, W., Moon, K. S., & Wong, C. P. (2012). Reversible Superhydrophobic–Superhydrophilic Transition of ZnO Nanorod/Epoxy Composite Films. ACS Applied Materials & Interfaces, 4(8), 3959-3964. doi:10.1021/am300778d
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., … Watanabe, T. (1997). Light-induced amphiphilic surfaces. Nature, 388(6641), 431-432. doi:10.1038/41233
Zhao, Y., Xiong, T., & Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Applied Surface Science, 256(10), 3073-3076. doi:10.1016/j.apsusc.2009.11.075
Mohan, L., Anandan, C., & Rajendran, N. (2015). Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Materials Science and Engineering: C, 50, 394-401. doi:10.1016/j.msec.2015.02.013
Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., & Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005. doi:10.1002/sia.3683
[-]