- -

Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders

Mostrar el registro completo del ítem

Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Reig, L.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals. 8(4):1-18. https://doi.org/10.3390/min8040123

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120143

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders
Autor: Cosa-Martínez, Juan Soriano Martinez, Lourdes Borrachero Rosado, María Victoria Reig, L. Paya Bernabeu, Jorge Juan Monzó Balbuena, José Mª
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Production of Portland cement requires a large volume of natural raw materials and releases huge amounts of CO2 to the atmosphere. Lower environmental impact alternatives focus on alkali-activated cements. In this ...[+]
Palabras clave: Sustainable construction materials , Waste management , Alkali-activated binder , Fluid catalytic cracking , Ceramic sanitaryware , Mechanical strength , Microstructure
Derechos de uso: Reconocimiento (by)
Fuente:
Minerals. (eissn: 2075-163X )
DOI: 10.3390/min8040123
Editorial:
MDPI AG
Versión del editor: http://doi.org/10.3390/min8040123
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/
Agradecimientos:
The authors would like to thank the Spanish Ministry of Science and Innovation for supporting this research through Project APLIGEO BIA2015-70107-R, FEDER funds and the companies Ideal Standard and Omya Clariana S.A., for ...[+]
Tipo: Artículo

References

Mineral Commodity Summaries 2017https://doi.org/10.3133/70180197

Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. doi:10.1016/j.ijsbe.2013.05.001

Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016 [+]
Mineral Commodity Summaries 2017https://doi.org/10.3133/70180197

Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. doi:10.1016/j.ijsbe.2013.05.001

Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016

Puertas, F., García-Díaz, I., Barba, A., Gazulla, M. F., Palacios, M., Gómez, M. P., & Martínez-Ramírez, S. (2008). Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, 30(9), 798-805. doi:10.1016/j.cemconcomp.2008.06.003

Puertas, F., García-Díaz, I., Palacios, M., Gazulla, M. F., Gómez, M. P., & Orduña, M. (2010). Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cement and Concrete Composites, 32(3), 175-186. doi:10.1016/j.cemconcomp.2009.11.011

García de Lomas, M., Sánchez de Rojas, M. I., & Frías, M. (2007). Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. Journal of Thermal Analysis and Calorimetry, 90(2), 443-447. doi:10.1007/s10973-006-7921-7

Frías, M., Rodríguez, O., Sanchez de Rojas, M. I., Villar-Cociña, E., Rodrigues, M. S., & Savastano Junior, H. (2017). Advances on the development of ternary cements elaborated with biomass ashes coming from different activation process. Construction and Building Materials, 136, 73-80. doi:10.1016/j.conbuildmat.2017.01.018

Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009

Ioannou, S., Reig, L., Paine, K., & Quillin, K. (2014). Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cement and Concrete Research, 56, 75-83. doi:10.1016/j.cemconres.2013.09.015

Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23. doi:10.1016/j.micromeso.2016.07.005

Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b

Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097

Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. doi:10.1016/j.conbuildmat.2014.05.080

Marín-López, C., Reyes Araiza, J. L., Manzano-Ramírez, A., Rubio Avalos, J. C., Perez-Bueno, J. J., Muñiz-Villareal, M. S., … Vorobiev, Y. (2009). Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorganic Materials, 45(12), 1429-1432. doi:10.1134/s0020168509120231

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi:10.1016/j.matdes.2014.03.037

Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317-325. doi:10.1016/j.conbuildmat.2016.02.099

Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436

Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172

Medina, C., Frías, M., & Sánchez de Rojas, M. I. (2012). Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 31, 112-118. doi:10.1016/j.conbuildmat.2011.12.075

Mejía de Gutiérrez, R., Trochez, J. J., Rivera, J., & Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios. Materiales de Construcción, 65(317), e046. doi:10.3989/mc.2015.00814

Payá, J., Monzó, J., Borrachero, M. ., & Velázquez, S. (2003). Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 33(4), 603-609. doi:10.1016/s0008-8846(02)01026-8

Pacewska, B., Wilińska, I., & Kubissa, J. (1998). Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochimica Acta, 322(2), 175-181. doi:10.1016/s0040-6031(98)00498-5

Chen, H.-L., Tseng, Y.-S., & Hsu, K.-C. (2004). Spent FCC catalyst as a pozzolanic material for high-performance mortars. Cement and Concrete Composites, 26(6), 657-664. doi:10.1016/s0958-9465(03)00048-9

Pacewska, B., Nowacka, M., Wilińska, I., Kubissa, W., & Antonovich, V. (2011). Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. Journal of Thermal Analysis and Calorimetry, 105(1), 129-140. doi:10.1007/s10973-011-1303-5

Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051

Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052

Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053

Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Cheng, T.-W., & Chang, Y.-M. (2015). Effect of solid-to-liquid ratios on the properties of waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 88, 74-83. doi:10.1016/j.conbuildmat.2015.01.005

Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Chang, Y.-M., & Cheng, T.-W. (2015). The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 95, 710-720. doi:10.1016/j.conbuildmat.2015.07.028

Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023

Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832-838. doi:10.1016/j.conbuildmat.2009.10.023

Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015

Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 40(6), 898-907. doi:10.1016/j.cemconres.2010.02.003

Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3

Ozer, I., & Soyer-Uzun, S. (2015). Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceramics International, 41(8), 10192-10198. doi:10.1016/j.ceramint.2015.04.125

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem