Mostrar el registro sencillo del ítem
dc.contributor.author | Cosa-Martínez, Juan | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Reig, L. | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.date.accessioned | 2019-05-08T20:31:36Z | |
dc.date.available | 2019-05-08T20:31:36Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120143 | |
dc.description.abstract | [EN] Production of Portland cement requires a large volume of natural raw materials and releases huge amounts of CO2 to the atmosphere. Lower environmental impact alternatives focus on alkali-activated cements. In this paper, fluid catalytic cracking residue (FCC) was used to partially replace (0 wt %¿50 wt %) ceramic sanitaryware (CSW) in alkali-activated systems. Samples were activated with NaOH and sodium silicate solutions and were cured at 65 °C for 7 days and at 20 °C for 28 and 90 days. In order to increase CSW/FCC binders¿ sustainability, the influence of reducing the silica concentration (from 7.28 mol·kg¿1 up to 2.91 mol·kg¿1) was analyzed. The microstructure of the developed binders was investigated in pastes by X-ray diffraction, thermo tests and field emission scanning electron microscopy analyses. Compressive strength evolution was assessed in mortars. The results showed a synergetic effect of the CSW/FCC combinations so that, under the studied conditions, mechanical properties significantly improved when combining both waste materials (up to 70 MPa were achieved in the mortars containing 50 wt % FCC cured at room temperature for 90 days). Addition of FCC allowed CSW to be activated at room temperature, which significantly broadens the field of applications of alkali-activated CSW binders. | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish Ministry of Science and Innovation for supporting this research through Project APLIGEO BIA2015-70107-R, FEDER funds and the companies Ideal Standard and Omya Clariana S.A., for supplying the raw CSW and FCC materials respectively. We also wish to thank the electron Microscopy Service of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Minerals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainable construction materials | es_ES |
dc.subject | Waste management | es_ES |
dc.subject | Alkali-activated binder | es_ES |
dc.subject | Fluid catalytic cracking | es_ES |
dc.subject | Ceramic sanitaryware | es_ES |
dc.subject | Mechanical strength | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/min8040123 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Reig, L.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals. 8(4):1-18. https://doi.org/10.3390/min8040123 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/min8040123 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2075-163X | es_ES |
dc.relation.pasarela | S\358826 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Mineral Commodity Summaries 2017https://doi.org/10.3133/70180197 | es_ES |
dc.description.references | Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. doi:10.1016/j.ijsbe.2013.05.001 | es_ES |
dc.description.references | Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016 | es_ES |
dc.description.references | Puertas, F., García-Díaz, I., Barba, A., Gazulla, M. F., Palacios, M., Gómez, M. P., & Martínez-Ramírez, S. (2008). Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, 30(9), 798-805. doi:10.1016/j.cemconcomp.2008.06.003 | es_ES |
dc.description.references | Puertas, F., García-Díaz, I., Palacios, M., Gazulla, M. F., Gómez, M. P., & Orduña, M. (2010). Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cement and Concrete Composites, 32(3), 175-186. doi:10.1016/j.cemconcomp.2009.11.011 | es_ES |
dc.description.references | García de Lomas, M., Sánchez de Rojas, M. I., & Frías, M. (2007). Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. Journal of Thermal Analysis and Calorimetry, 90(2), 443-447. doi:10.1007/s10973-006-7921-7 | es_ES |
dc.description.references | Frías, M., Rodríguez, O., Sanchez de Rojas, M. I., Villar-Cociña, E., Rodrigues, M. S., & Savastano Junior, H. (2017). Advances on the development of ternary cements elaborated with biomass ashes coming from different activation process. Construction and Building Materials, 136, 73-80. doi:10.1016/j.conbuildmat.2017.01.018 | es_ES |
dc.description.references | Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009 | es_ES |
dc.description.references | Ioannou, S., Reig, L., Paine, K., & Quillin, K. (2014). Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cement and Concrete Research, 56, 75-83. doi:10.1016/j.cemconres.2013.09.015 | es_ES |
dc.description.references | Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23. doi:10.1016/j.micromeso.2016.07.005 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097 | es_ES |
dc.description.references | Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. doi:10.1016/j.conbuildmat.2014.05.080 | es_ES |
dc.description.references | Marín-López, C., Reyes Araiza, J. L., Manzano-Ramírez, A., Rubio Avalos, J. C., Perez-Bueno, J. J., Muñiz-Villareal, M. S., … Vorobiev, Y. (2009). Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorganic Materials, 45(12), 1429-1432. doi:10.1134/s0020168509120231 | es_ES |
dc.description.references | Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi:10.1016/j.matdes.2014.03.037 | es_ES |
dc.description.references | Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317-325. doi:10.1016/j.conbuildmat.2016.02.099 | es_ES |
dc.description.references | Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436 | es_ES |
dc.description.references | Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172 | es_ES |
dc.description.references | Medina, C., Frías, M., & Sánchez de Rojas, M. I. (2012). Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 31, 112-118. doi:10.1016/j.conbuildmat.2011.12.075 | es_ES |
dc.description.references | Mejía de Gutiérrez, R., Trochez, J. J., Rivera, J., & Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios. Materiales de Construcción, 65(317), e046. doi:10.3989/mc.2015.00814 | es_ES |
dc.description.references | Payá, J., Monzó, J., Borrachero, M. ., & Velázquez, S. (2003). Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 33(4), 603-609. doi:10.1016/s0008-8846(02)01026-8 | es_ES |
dc.description.references | Pacewska, B., Wilińska, I., & Kubissa, J. (1998). Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochimica Acta, 322(2), 175-181. doi:10.1016/s0040-6031(98)00498-5 | es_ES |
dc.description.references | Chen, H.-L., Tseng, Y.-S., & Hsu, K.-C. (2004). Spent FCC catalyst as a pozzolanic material for high-performance mortars. Cement and Concrete Composites, 26(6), 657-664. doi:10.1016/s0958-9465(03)00048-9 | es_ES |
dc.description.references | Pacewska, B., Nowacka, M., Wilińska, I., Kubissa, W., & Antonovich, V. (2011). Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. Journal of Thermal Analysis and Calorimetry, 105(1), 129-140. doi:10.1007/s10973-011-1303-5 | es_ES |
dc.description.references | Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 | es_ES |
dc.description.references | Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052 | es_ES |
dc.description.references | Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053 | es_ES |
dc.description.references | Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Cheng, T.-W., & Chang, Y.-M. (2015). Effect of solid-to-liquid ratios on the properties of waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 88, 74-83. doi:10.1016/j.conbuildmat.2015.01.005 | es_ES |
dc.description.references | Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Chang, Y.-M., & Cheng, T.-W. (2015). The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 95, 710-720. doi:10.1016/j.conbuildmat.2015.07.028 | es_ES |
dc.description.references | Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023 | es_ES |
dc.description.references | Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832-838. doi:10.1016/j.conbuildmat.2009.10.023 | es_ES |
dc.description.references | Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015 | es_ES |
dc.description.references | Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 40(6), 898-907. doi:10.1016/j.cemconres.2010.02.003 | es_ES |
dc.description.references | Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3 | es_ES |
dc.description.references | Ozer, I., & Soyer-Uzun, S. (2015). Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceramics International, 41(8), 10192-10198. doi:10.1016/j.ceramint.2015.04.125 | es_ES |