- -

Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cosa-Martínez, Juan es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Reig, L. es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.date.accessioned 2019-05-08T20:31:36Z
dc.date.available 2019-05-08T20:31:36Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120143
dc.description.abstract [EN] Production of Portland cement requires a large volume of natural raw materials and releases huge amounts of CO2 to the atmosphere. Lower environmental impact alternatives focus on alkali-activated cements. In this paper, fluid catalytic cracking residue (FCC) was used to partially replace (0 wt %¿50 wt %) ceramic sanitaryware (CSW) in alkali-activated systems. Samples were activated with NaOH and sodium silicate solutions and were cured at 65 °C for 7 days and at 20 °C for 28 and 90 days. In order to increase CSW/FCC binders¿ sustainability, the influence of reducing the silica concentration (from 7.28 mol·kg¿1 up to 2.91 mol·kg¿1) was analyzed. The microstructure of the developed binders was investigated in pastes by X-ray diffraction, thermo tests and field emission scanning electron microscopy analyses. Compressive strength evolution was assessed in mortars. The results showed a synergetic effect of the CSW/FCC combinations so that, under the studied conditions, mechanical properties significantly improved when combining both waste materials (up to 70 MPa were achieved in the mortars containing 50 wt % FCC cured at room temperature for 90 days). Addition of FCC allowed CSW to be activated at room temperature, which significantly broadens the field of applications of alkali-activated CSW binders. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Science and Innovation for supporting this research through Project APLIGEO BIA2015-70107-R, FEDER funds and the companies Ideal Standard and Omya Clariana S.A., for supplying the raw CSW and FCC materials respectively. We also wish to thank the electron Microscopy Service of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Minerals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sustainable construction materials es_ES
dc.subject Waste management es_ES
dc.subject Alkali-activated binder es_ES
dc.subject Fluid catalytic cracking es_ES
dc.subject Ceramic sanitaryware es_ES
dc.subject Mechanical strength es_ES
dc.subject Microstructure es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/min8040123 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Reig, L.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals. 8(4):1-18. https://doi.org/10.3390/min8040123 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/min8040123 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2075-163X es_ES
dc.relation.pasarela S\358826 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Mineral Commodity Summaries 2017https://doi.org/10.3133/70180197 es_ES
dc.description.references Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. doi:10.1016/j.ijsbe.2013.05.001 es_ES
dc.description.references Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016 es_ES
dc.description.references Puertas, F., García-Díaz, I., Barba, A., Gazulla, M. F., Palacios, M., Gómez, M. P., & Martínez-Ramírez, S. (2008). Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, 30(9), 798-805. doi:10.1016/j.cemconcomp.2008.06.003 es_ES
dc.description.references Puertas, F., García-Díaz, I., Palacios, M., Gazulla, M. F., Gómez, M. P., & Orduña, M. (2010). Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cement and Concrete Composites, 32(3), 175-186. doi:10.1016/j.cemconcomp.2009.11.011 es_ES
dc.description.references García de Lomas, M., Sánchez de Rojas, M. I., & Frías, M. (2007). Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. Journal of Thermal Analysis and Calorimetry, 90(2), 443-447. doi:10.1007/s10973-006-7921-7 es_ES
dc.description.references Frías, M., Rodríguez, O., Sanchez de Rojas, M. I., Villar-Cociña, E., Rodrigues, M. S., & Savastano Junior, H. (2017). Advances on the development of ternary cements elaborated with biomass ashes coming from different activation process. Construction and Building Materials, 136, 73-80. doi:10.1016/j.conbuildmat.2017.01.018 es_ES
dc.description.references Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009 es_ES
dc.description.references Ioannou, S., Reig, L., Paine, K., & Quillin, K. (2014). Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cement and Concrete Research, 56, 75-83. doi:10.1016/j.cemconres.2013.09.015 es_ES
dc.description.references Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12-23. doi:10.1016/j.micromeso.2016.07.005 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097 es_ES
dc.description.references Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. doi:10.1016/j.conbuildmat.2014.05.080 es_ES
dc.description.references Marín-López, C., Reyes Araiza, J. L., Manzano-Ramírez, A., Rubio Avalos, J. C., Perez-Bueno, J. J., Muñiz-Villareal, M. S., … Vorobiev, Y. (2009). Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorganic Materials, 45(12), 1429-1432. doi:10.1134/s0020168509120231 es_ES
dc.description.references Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi:10.1016/j.matdes.2014.03.037 es_ES
dc.description.references Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317-325. doi:10.1016/j.conbuildmat.2016.02.099 es_ES
dc.description.references Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436 es_ES
dc.description.references Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172 es_ES
dc.description.references Medina, C., Frías, M., & Sánchez de Rojas, M. I. (2012). Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 31, 112-118. doi:10.1016/j.conbuildmat.2011.12.075 es_ES
dc.description.references Mejía de Gutiérrez, R., Trochez, J. J., Rivera, J., & Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios. Materiales de Construcción, 65(317), e046. doi:10.3989/mc.2015.00814 es_ES
dc.description.references Payá, J., Monzó, J., Borrachero, M. ., & Velázquez, S. (2003). Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 33(4), 603-609. doi:10.1016/s0008-8846(02)01026-8 es_ES
dc.description.references Pacewska, B., Wilińska, I., & Kubissa, J. (1998). Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochimica Acta, 322(2), 175-181. doi:10.1016/s0040-6031(98)00498-5 es_ES
dc.description.references Chen, H.-L., Tseng, Y.-S., & Hsu, K.-C. (2004). Spent FCC catalyst as a pozzolanic material for high-performance mortars. Cement and Concrete Composites, 26(6), 657-664. doi:10.1016/s0958-9465(03)00048-9 es_ES
dc.description.references Pacewska, B., Nowacka, M., Wilińska, I., Kubissa, W., & Antonovich, V. (2011). Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. Journal of Thermal Analysis and Calorimetry, 105(1), 129-140. doi:10.1007/s10973-011-1303-5 es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052 es_ES
dc.description.references Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053 es_ES
dc.description.references Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Cheng, T.-W., & Chang, Y.-M. (2015). Effect of solid-to-liquid ratios on the properties of waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 88, 74-83. doi:10.1016/j.conbuildmat.2015.01.005 es_ES
dc.description.references Cheng, H., Lin, K.-L., Cui, R., Hwang, C.-L., Chang, Y.-M., & Cheng, T.-W. (2015). The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 95, 710-720. doi:10.1016/j.conbuildmat.2015.07.028 es_ES
dc.description.references Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023 es_ES
dc.description.references Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832-838. doi:10.1016/j.conbuildmat.2009.10.023 es_ES
dc.description.references Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015 es_ES
dc.description.references Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 40(6), 898-907. doi:10.1016/j.cemconres.2010.02.003 es_ES
dc.description.references Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3 es_ES
dc.description.references Ozer, I., & Soyer-Uzun, S. (2015). Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceramics International, 41(8), 10192-10198. doi:10.1016/j.ceramint.2015.04.125 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem