Zedan, S. R., Mohamed, M. R., Ahmed, D. A., & Mohammed, A. H. (2015). Alkali activated ceramic waste with or without two different calcium sources. Advances in materials Research, 4(3), 133-144. doi:10.12989/amr.2015.4.3.133
Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., & Petrović, R. (2015). Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International, 41(1), 1421-1435. doi:10.1016/j.ceramint.2014.09.075
Najimi, M., Ghafoori, N., & Sharbaf, M. (2018). Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials, 164, 625-643. doi:10.1016/j.conbuildmat.2017.12.222
[+]
Zedan, S. R., Mohamed, M. R., Ahmed, D. A., & Mohammed, A. H. (2015). Alkali activated ceramic waste with or without two different calcium sources. Advances in materials Research, 4(3), 133-144. doi:10.12989/amr.2015.4.3.133
Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., & Petrović, R. (2015). Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International, 41(1), 1421-1435. doi:10.1016/j.ceramint.2014.09.075
Najimi, M., Ghafoori, N., & Sharbaf, M. (2018). Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials, 164, 625-643. doi:10.1016/j.conbuildmat.2017.12.222
Chen, X., Sutrisno, A., & Struble, L. J. (2017). Effects of calcium on setting mechanism of metakaolin-based geopolymer. Journal of the American Ceramic Society, 101(2), 957-968. doi:10.1111/jace.15249
Gobierno de España: Catálogo de Residuos. Ficha Técnica Cenizas Volantes De Carbón Y Cenizas De Hogar O Escorias http://www.cedexmateriales.es/catalogo-de-residuos/24/diciembre-2011/
Toniolo, N., & Boccaccini, A. R. (2017). Fly ash-based geopolymers containing added silicate waste. A review. Ceramics International, 43(17), 14545-14551. doi:10.1016/j.ceramint.2017.07.221
Ranjbar, N., & Kuenzel, C. (2017). Cenospheres: A review. Fuel, 207, 1-12. doi:10.1016/j.fuel.2017.06.059
Gobierno de España: Catálogo de Residuos. Ficha Técnica Escorias De Horno Alto http://www.cedexmateriales.es/catalogo-de-residuos/39/escorias-de-horno-alto/
World Steel Association, World Steel in Figures 2017 https://www.worldsteel.org
Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019
Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183-198. doi:10.1016/j.conbuildmat.2016.09.136
Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b
Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 140, 10-19. doi:10.1016/j.conbuildmat.2017.02.078
Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295-305. doi:10.1016/j.conbuildmat.2013.06.063
Bernasconi, A., Diella, V., Pagani, A., Pavese, A., Francescon, F., Young, K., … Tunnicliffe, L. (2011). The role of firing temperature, firing time and quartz grain size on phase-formation, thermal dilatation and water absorption in sanitary-ware vitreous bodies. Journal of the European Ceramic Society, 31(8), 1353-1360. doi:10.1016/j.jeurceramsoc.2011.02.006
Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172
Robayo-Salazar, R. A., de Gutiérrez, M., & Puertas, F. (2017). Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Construction and Building Materials, 157, 151-160. doi:10.1016/j.conbuildmat.2017.09.092
Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement and Concrete Composites, 86, 9-18. doi:10.1016/j.cemconcomp.2017.09.011
Tashima, M. M., Reig, L., Santini, M. A., B Moraes, J. C., Akasaki, J. L., Payá, J., … Soriano, L. (2016). Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 8(5), 1441-1451. doi:10.1007/s12649-016-9659-1
Perná, I., & Hanzlíček, T. (2016). The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. Journal of Cleaner Production, 112, 1150-1155. doi:10.1016/j.jclepro.2015.05.069
El-Naggar, M. R., & Amin, M. (2018). Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. Journal of Hazardous Materials, 344, 913-924. doi:10.1016/j.jhazmat.2017.11.049
Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436
García-Lodeiro, I., Fernández-Jiménez, A., & Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 52, 112-122. doi:10.1016/j.cemconres.2013.03.022
Cosa, J., Soriano, L., Borrachero, M., Reig, L., Payá, J., & Monzó, J. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), 123. doi:10.3390/min8040123
Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023
Temuujin, J., Williams, R. P., & van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12-13), 5276-5280. doi:10.1016/j.jmatprotec.2009.03.016
Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006
Džunuzović, N., Komljenović, M., Nikolić, V., & Ivanović, T. (2017). External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Construction and Building Materials, 157, 737-747. doi:10.1016/j.conbuildmat.2017.09.159
Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015
De Moraes, J. C. B., Tashima, M. M., Melges, J. L. P., Akasaki, J. L., Monzó, J., Borrachero, M. V., … Payá, J. (2018). Optimum Use of Sugar Cane Straw Ash in Alkali-Activated Binders Based on Blast Furnace Slag. Journal of Materials in Civil Engineering, 30(6), 04018084. doi:10.1061/(asce)mt.1943-5533.0002261
Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005-1025. doi:10.1016/j.matdes.2013.07.074
Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8-16. doi:10.1016/j.cemconcomp.2014.10.007
Burciaga-Díaz, O., & Escalante-García, J. I. (2017). Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement and Concrete Composites, 84, 157-166. doi:10.1016/j.cemconcomp.2017.09.007
Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3
Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097
Rodríguez, E. D., Bernal, S. A., Provis, J. L., Paya, J., Monzo, J. M., & Borrachero, M. V. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), 1-11. doi:10.1016/j.cemconcomp.2012.08.025
Djobo, J. N. Y., Tchakouté, H. K., Ranjbar, N., Elimbi, A., Tchadjié, L. N., & Njopwouo, D. (2016). Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. Journal of the American Ceramic Society, 99(9), 3159-3166. doi:10.1111/jace.14332
Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512-518. doi:10.1016/j.cemconres.2007.01.003
[-]