- -

The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cosa-Martínez, Juan es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Reig, L. es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.date.accessioned 2019-05-08T20:31:52Z
dc.date.available 2019-05-08T20:31:52Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120145
dc.description.abstract [EN] The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0¿50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days. es_ES
dc.description.sponsorship This research received financial support from the Spanish Ministry of Science and Innovation through Project APLIGEO BIA2015-70107-R and FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Minerals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sustainable construction materials es_ES
dc.subject Waste management es_ES
dc.subject Alkali-activated binder es_ES
dc.subject Fly ash es_ES
dc.subject Blast furnace slag es_ES
dc.subject Ceramic sanitaryware es_ES
dc.subject Mechanical strength es_ES
dc.subject Microstructure es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/min8080337 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Reig, L.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2018). The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag. Minerals. 8(8):1-19. https://doi.org/10.3390/min8080337 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/min8080337 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2075-163X es_ES
dc.relation.pasarela S\367228 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Zedan, S. R., Mohamed, M. R., Ahmed, D. A., & Mohammed, A. H. (2015). Alkali activated ceramic waste with or without two different calcium sources. Advances in materials Research, 4(3), 133-144. doi:10.12989/amr.2015.4.3.133 es_ES
dc.description.references Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., & Petrović, R. (2015). Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International, 41(1), 1421-1435. doi:10.1016/j.ceramint.2014.09.075 es_ES
dc.description.references Najimi, M., Ghafoori, N., & Sharbaf, M. (2018). Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials, 164, 625-643. doi:10.1016/j.conbuildmat.2017.12.222 es_ES
dc.description.references Chen, X., Sutrisno, A., & Struble, L. J. (2017). Effects of calcium on setting mechanism of metakaolin-based geopolymer. Journal of the American Ceramic Society, 101(2), 957-968. doi:10.1111/jace.15249 es_ES
dc.description.references Gobierno de España: Catálogo de Residuos. Ficha Técnica Cenizas Volantes De Carbón Y Cenizas De Hogar O Escorias http://www.cedexmateriales.es/catalogo-de-residuos/24/diciembre-2011/ es_ES
dc.description.references Toniolo, N., & Boccaccini, A. R. (2017). Fly ash-based geopolymers containing added silicate waste. A review. Ceramics International, 43(17), 14545-14551. doi:10.1016/j.ceramint.2017.07.221 es_ES
dc.description.references Ranjbar, N., & Kuenzel, C. (2017). Cenospheres: A review. Fuel, 207, 1-12. doi:10.1016/j.fuel.2017.06.059 es_ES
dc.description.references Gobierno de España: Catálogo de Residuos. Ficha Técnica Escorias De Horno Alto http://www.cedexmateriales.es/catalogo-de-residuos/39/escorias-de-horno-alto/ es_ES
dc.description.references World Steel Association, World Steel in Figures 2017 https://www.worldsteel.org es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019 es_ES
dc.description.references Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183-198. doi:10.1016/j.conbuildmat.2016.09.136 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 140, 10-19. doi:10.1016/j.conbuildmat.2017.02.078 es_ES
dc.description.references Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295-305. doi:10.1016/j.conbuildmat.2013.06.063 es_ES
dc.description.references Bernasconi, A., Diella, V., Pagani, A., Pavese, A., Francescon, F., Young, K., … Tunnicliffe, L. (2011). The role of firing temperature, firing time and quartz grain size on phase-formation, thermal dilatation and water absorption in sanitary-ware vitreous bodies. Journal of the European Ceramic Society, 31(8), 1353-1360. doi:10.1016/j.jeurceramsoc.2011.02.006 es_ES
dc.description.references Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172 es_ES
dc.description.references Robayo-Salazar, R. A., de Gutiérrez, M., & Puertas, F. (2017). Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Construction and Building Materials, 157, 151-160. doi:10.1016/j.conbuildmat.2017.09.092 es_ES
dc.description.references Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement and Concrete Composites, 86, 9-18. doi:10.1016/j.cemconcomp.2017.09.011 es_ES
dc.description.references Tashima, M. M., Reig, L., Santini, M. A., B Moraes, J. C., Akasaki, J. L., Payá, J., … Soriano, L. (2016). Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 8(5), 1441-1451. doi:10.1007/s12649-016-9659-1 es_ES
dc.description.references Perná, I., & Hanzlíček, T. (2016). The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. Journal of Cleaner Production, 112, 1150-1155. doi:10.1016/j.jclepro.2015.05.069 es_ES
dc.description.references El-Naggar, M. R., & Amin, M. (2018). Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. Journal of Hazardous Materials, 344, 913-924. doi:10.1016/j.jhazmat.2017.11.049 es_ES
dc.description.references Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436 es_ES
dc.description.references García-Lodeiro, I., Fernández-Jiménez, A., & Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 52, 112-122. doi:10.1016/j.cemconres.2013.03.022 es_ES
dc.description.references Cosa, J., Soriano, L., Borrachero, M., Reig, L., Payá, J., & Monzó, J. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), 123. doi:10.3390/min8040123 es_ES
dc.description.references Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023 es_ES
dc.description.references Temuujin, J., Williams, R. P., & van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12-13), 5276-5280. doi:10.1016/j.jmatprotec.2009.03.016 es_ES
dc.description.references Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006 es_ES
dc.description.references Džunuzović, N., Komljenović, M., Nikolić, V., & Ivanović, T. (2017). External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Construction and Building Materials, 157, 737-747. doi:10.1016/j.conbuildmat.2017.09.159 es_ES
dc.description.references Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015 es_ES
dc.description.references De Moraes, J. C. B., Tashima, M. M., Melges, J. L. P., Akasaki, J. L., Monzó, J., Borrachero, M. V., … Payá, J. (2018). Optimum Use of Sugar Cane Straw Ash in Alkali-Activated Binders Based on Blast Furnace Slag. Journal of Materials in Civil Engineering, 30(6), 04018084. doi:10.1061/(asce)mt.1943-5533.0002261 es_ES
dc.description.references Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005-1025. doi:10.1016/j.matdes.2013.07.074 es_ES
dc.description.references Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8-16. doi:10.1016/j.cemconcomp.2014.10.007 es_ES
dc.description.references Burciaga-Díaz, O., & Escalante-García, J. I. (2017). Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement and Concrete Composites, 84, 157-166. doi:10.1016/j.cemconcomp.2017.09.007 es_ES
dc.description.references Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3 es_ES
dc.description.references Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097 es_ES
dc.description.references Rodríguez, E. D., Bernal, S. A., Provis, J. L., Paya, J., Monzo, J. M., & Borrachero, M. V. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), 1-11. doi:10.1016/j.cemconcomp.2012.08.025 es_ES
dc.description.references Djobo, J. N. Y., Tchakouté, H. K., Ranjbar, N., Elimbi, A., Tchadjié, L. N., & Njopwouo, D. (2016). Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. Journal of the American Ceramic Society, 99(9), 3159-3166. doi:10.1111/jace.14332 es_ES
dc.description.references Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512-518. doi:10.1016/j.cemconres.2007.01.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem