Mostrar el registro sencillo del ítem
dc.contributor.author | Cosa-Martínez, Juan | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Reig, L. | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.date.accessioned | 2019-05-08T20:31:52Z | |
dc.date.available | 2019-05-08T20:31:52Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120145 | |
dc.description.abstract | [EN] The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0¿50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days. | es_ES |
dc.description.sponsorship | This research received financial support from the Spanish Ministry of Science and Innovation through Project APLIGEO BIA2015-70107-R and FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Minerals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainable construction materials | es_ES |
dc.subject | Waste management | es_ES |
dc.subject | Alkali-activated binder | es_ES |
dc.subject | Fly ash | es_ES |
dc.subject | Blast furnace slag | es_ES |
dc.subject | Ceramic sanitaryware | es_ES |
dc.subject | Mechanical strength | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/min8080337 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Reig, L.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2018). The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag. Minerals. 8(8):1-19. https://doi.org/10.3390/min8080337 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/min8080337 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2075-163X | es_ES |
dc.relation.pasarela | S\367228 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Zedan, S. R., Mohamed, M. R., Ahmed, D. A., & Mohammed, A. H. (2015). Alkali activated ceramic waste with or without two different calcium sources. Advances in materials Research, 4(3), 133-144. doi:10.12989/amr.2015.4.3.133 | es_ES |
dc.description.references | Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., & Petrović, R. (2015). Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International, 41(1), 1421-1435. doi:10.1016/j.ceramint.2014.09.075 | es_ES |
dc.description.references | Najimi, M., Ghafoori, N., & Sharbaf, M. (2018). Alkali-activated natural pozzolan/slag mortars: A parametric study. Construction and Building Materials, 164, 625-643. doi:10.1016/j.conbuildmat.2017.12.222 | es_ES |
dc.description.references | Chen, X., Sutrisno, A., & Struble, L. J. (2017). Effects of calcium on setting mechanism of metakaolin-based geopolymer. Journal of the American Ceramic Society, 101(2), 957-968. doi:10.1111/jace.15249 | es_ES |
dc.description.references | Gobierno de España: Catálogo de Residuos. Ficha Técnica Cenizas Volantes De Carbón Y Cenizas De Hogar O Escorias http://www.cedexmateriales.es/catalogo-de-residuos/24/diciembre-2011/ | es_ES |
dc.description.references | Toniolo, N., & Boccaccini, A. R. (2017). Fly ash-based geopolymers containing added silicate waste. A review. Ceramics International, 43(17), 14545-14551. doi:10.1016/j.ceramint.2017.07.221 | es_ES |
dc.description.references | Ranjbar, N., & Kuenzel, C. (2017). Cenospheres: A review. Fuel, 207, 1-12. doi:10.1016/j.fuel.2017.06.059 | es_ES |
dc.description.references | Gobierno de España: Catálogo de Residuos. Ficha Técnica Escorias De Horno Alto http://www.cedexmateriales.es/catalogo-de-residuos/39/escorias-de-horno-alto/ | es_ES |
dc.description.references | World Steel Association, World Steel in Figures 2017 https://www.worldsteel.org | es_ES |
dc.description.references | Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019 | es_ES |
dc.description.references | Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183-198. doi:10.1016/j.conbuildmat.2016.09.136 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 140, 10-19. doi:10.1016/j.conbuildmat.2017.02.078 | es_ES |
dc.description.references | Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295-305. doi:10.1016/j.conbuildmat.2013.06.063 | es_ES |
dc.description.references | Bernasconi, A., Diella, V., Pagani, A., Pavese, A., Francescon, F., Young, K., … Tunnicliffe, L. (2011). The role of firing temperature, firing time and quartz grain size on phase-formation, thermal dilatation and water absorption in sanitary-ware vitreous bodies. Journal of the European Ceramic Society, 31(8), 1353-1360. doi:10.1016/j.jeurceramsoc.2011.02.006 | es_ES |
dc.description.references | Reig, L., Borrachero, M. V., Monzó, J. M., Savastano, H., Tashima, M. M., & Payá, J. (2015). Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 668, 172-180. doi:10.4028/www.scientific.net/kem.668.172 | es_ES |
dc.description.references | Robayo-Salazar, R. A., de Gutiérrez, M., & Puertas, F. (2017). Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Construction and Building Materials, 157, 151-160. doi:10.1016/j.conbuildmat.2017.09.092 | es_ES |
dc.description.references | Pan, Z., Tao, Z., Cao, Y. F., Wuhrer, R., & Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement and Concrete Composites, 86, 9-18. doi:10.1016/j.cemconcomp.2017.09.011 | es_ES |
dc.description.references | Tashima, M. M., Reig, L., Santini, M. A., B Moraes, J. C., Akasaki, J. L., Payá, J., … Soriano, L. (2016). Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 8(5), 1441-1451. doi:10.1007/s12649-016-9659-1 | es_ES |
dc.description.references | Perná, I., & Hanzlíček, T. (2016). The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. Journal of Cleaner Production, 112, 1150-1155. doi:10.1016/j.jclepro.2015.05.069 | es_ES |
dc.description.references | El-Naggar, M. R., & Amin, M. (2018). Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. Journal of Hazardous Materials, 344, 913-924. doi:10.1016/j.jhazmat.2017.11.049 | es_ES |
dc.description.references | Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. Journal of the American Ceramic Society, 101(7), 3094-3104. doi:10.1111/jace.15436 | es_ES |
dc.description.references | García-Lodeiro, I., Fernández-Jiménez, A., & Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 52, 112-122. doi:10.1016/j.cemconres.2013.03.022 | es_ES |
dc.description.references | Cosa, J., Soriano, L., Borrachero, M., Reig, L., Payá, J., & Monzó, J. (2018). Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), 123. doi:10.3390/min8040123 | es_ES |
dc.description.references | Reig, L., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 63, 214-222. doi:10.1016/j.conbuildmat.2014.04.023 | es_ES |
dc.description.references | Temuujin, J., Williams, R. P., & van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12-13), 5276-5280. doi:10.1016/j.jmatprotec.2009.03.016 | es_ES |
dc.description.references | Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006 | es_ES |
dc.description.references | Džunuzović, N., Komljenović, M., Nikolić, V., & Ivanović, T. (2017). External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Construction and Building Materials, 157, 737-747. doi:10.1016/j.conbuildmat.2017.09.159 | es_ES |
dc.description.references | Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 91(1-3), 111-119. doi:10.1016/j.micromeso.2005.11.015 | es_ES |
dc.description.references | De Moraes, J. C. B., Tashima, M. M., Melges, J. L. P., Akasaki, J. L., Monzó, J., Borrachero, M. V., … Payá, J. (2018). Optimum Use of Sugar Cane Straw Ash in Alkali-Activated Binders Based on Blast Furnace Slag. Journal of Materials in Civil Engineering, 30(6), 04018084. doi:10.1061/(asce)mt.1943-5533.0002261 | es_ES |
dc.description.references | Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005-1025. doi:10.1016/j.matdes.2013.07.074 | es_ES |
dc.description.references | Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8-16. doi:10.1016/j.cemconcomp.2014.10.007 | es_ES |
dc.description.references | Burciaga-Díaz, O., & Escalante-García, J. I. (2017). Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement and Concrete Composites, 84, 157-166. doi:10.1016/j.cemconcomp.2017.09.007 | es_ES |
dc.description.references | Hidalgo, A., García, J. L., Alonso, M. C., Fernández, L., & Andrade, C. (2009). Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash. Journal of Thermal Analysis and Calorimetry, 96(2), 335-345. doi:10.1007/s10973-007-8439-3 | es_ES |
dc.description.references | Khan, M. Z. N., Shaikh, F. uddin A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809-820. doi:10.1016/j.conbuildmat.2016.08.097 | es_ES |
dc.description.references | Rodríguez, E. D., Bernal, S. A., Provis, J. L., Paya, J., Monzo, J. M., & Borrachero, M. V. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), 1-11. doi:10.1016/j.cemconcomp.2012.08.025 | es_ES |
dc.description.references | Djobo, J. N. Y., Tchakouté, H. K., Ranjbar, N., Elimbi, A., Tchadjié, L. N., & Njopwouo, D. (2016). Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. Journal of the American Ceramic Society, 99(9), 3159-3166. doi:10.1111/jace.14332 | es_ES |
dc.description.references | Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512-518. doi:10.1016/j.cemconres.2007.01.003 | es_ES |