- -

Water End Use Disaggregation Based on Soft Computing Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water End Use Disaggregation Based on Soft Computing Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pastor-Jabaloyes, Laura es_ES
dc.contributor.author Arregui de la Cruz, Francisco es_ES
dc.contributor.author Cobacho Jordán, Ricardo es_ES
dc.date.accessioned 2019-05-11T20:04:01Z
dc.date.available 2019-05-11T20:04:01Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120353
dc.description.abstract [EN] Disaggregating residential water end use events through the available commercial tools needs a great investment in time to manually process smart metering data. Therefore, it is extremely difficult to achieve a homogenous and sufficiently large corpus of classified single-use events capable of accurately describe residential water consumption. The main goal of the present paper is to develop an automatic tool that facilitates the disaggregation of the individual water consumptions events from the raw flow trace. The proposed disaggregation methodology is conducted through two actions that are iteratively performed: first, the use of an advanced two-step filter, whose calibration is automatically conducted by the Elitist Non-Dominated Sorting Genetic Algorithm NSGA-II; and second, a cropping algorithm based on the filtered water consumption flow traces. As a secondary goal, yet complementary to the main one, a semiautomatic massive classification process has been developed, so that the resulting single-use events can be easily categorized in the different water end uses in a household. This methodology was tested using water consumption data from two different case studies. The characteristics of the households taken as reference and their occupants were unequivocally dissimilar from each other. In addition, the monitoring equipment used to obtain the consumption flow traces had completely different technical specifications. The results obtained from the processing of the two studies show that the automatic disaggregation is both robust and accurate, and produces significant time saving compared to the standard manual analysis. es_ES
dc.description.sponsorship This study has received funding by the IMPADAPT project /CGL2013-48424-C2-1-R from the Spanish ministry MINECO with European FEDER funds and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 619172 (SmartH2O: an ICT Platform to leverage on Social Computing for the efficient management of Water Consumption). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water end uses es_ES
dc.subject Water microcomponents es_ES
dc.subject High frequency smart metering data es_ES
dc.subject Residential water flow trace disaggregation es_ES
dc.subject Water flow trace filtering es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Water End Use Disaggregation Based on Soft Computing Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w10010046 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/619172/EU/SmartH2O: an ICT Platform to leverage on Social Computing for the efficient management of Water Consumption/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pastor-Jabaloyes, L.; Arregui De La Cruz, F.; Cobacho Jordán, R. (2018). Water End Use Disaggregation Based on Soft Computing Techniques. Water. 10(1). https://doi.org/10.3390/w10010046 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/w10010046 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\355648 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem