- -

Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series

Show full item record

Burgos-Simon, C.; Calatayud-Gregori, J.; Cortés, J.; Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters. 78:95-104. https://doi.org/10.1016/j.aml.2017.11.009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120362

Files in this item

Item Metadata

Title: Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series
Author: Burgos-Simon, Clara Calatayud-Gregori, Julia Cortés, J.-C. Villafuerte, Laura
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The aim of this paper is to solve a class of non-autonomous linear fractional differential equations with random inputs. A mean square convergent series solution is constructed in the case that the fractional order a ...[+]
Subjects: Random fractional differential equations , Random mean square calculus
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied Mathematics Letters. (issn: 0893-9659 )
DOI: 10.1016/j.aml.2017.11.009
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.aml.2017.11.009
Thanks:
Authors gratefully acknowledge the comments made by reviewers, which have greatly enriched the manuscript. This work has been partially supported by Ministerio de Economia y Competitividad grant MTM2013-41765-P.
Type: Artículo

This item appears in the following Collection(s)

Show full item record