Mostrar el registro sencillo del ítem
dc.contributor.author | De Oña, J. | es_ES |
dc.contributor.author | De Oña, R. | es_ES |
dc.contributor.author | López-Maldonado, Griselda | es_ES |
dc.date.accessioned | 2019-05-13T20:27:28Z | |
dc.date.available | 2019-05-13T20:27:28Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.issn | 0049-4488 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120461 | |
dc.description.abstract | [EN] A transit service quality study based on cluster analysis was performed to extract detailed customer profiles sharing similar appraisals concerning the service. This approach made it possible to detect specific requirements and needs regarding the quality of service and to personalize the marketing strategy. Data from various customer satisfaction surveys conducted by the Transport Consortium of Granada (Spain) were analyzed to distinguish these groups; a decision tree methodology was used to identify the most important service quality attributes influencing passengers overall evaluations. Cluster analysis identified four groups of passengers. Comparisons using decision trees among the overall sample of all users and the different groups of passengers identified by cluster analysis led to the discovery of differences in the key attributes encompassed by perceived quality. | es_ES |
dc.description.sponsorship | The authors also acknowledge the Granada Consorcio de Transportes for making the data set available for this study. Griselda Lopez wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for their scholarship to train teachers and researchers in Deficit Areas. Rocio de Ona wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for the Excellence Research Project denominated "Q-METROBUS-Quality of service indicator for METROpolitan public BUS transport services'', co-funded with Feder. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Transportation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Service quality | es_ES |
dc.subject | Personalized marketing | es_ES |
dc.subject | Cluster analysis | es_ES |
dc.subject | Decision trees | es_ES |
dc.subject | CART | es_ES |
dc.subject | Bus transit | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11116-015-9615-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.description.bibliographicCitation | De Oña, J.; De Oña, R.; López-Maldonado, G. (2015). Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation. Transportation. 43(5):725-747. https://doi.org/10.1007/s11116-015-9615-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11116-015-9615-0 | es_ES |
dc.description.upvformatpinicio | 725 | es_ES |
dc.description.upvformatpfin | 747 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\338725 | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.description.references | Abou Zeid, M., Ben-Akiva, M.: A model of travel happiness and mode switching, in choice modelling: the state-of-the-art and the state-of-practice. In: Hess S., Daly A. (eds.) Proceedings from the Inaugural International Choice Modelling Conference, pp. 289–307. Emerald Group Publishing Limited (2010) | es_ES |
dc.description.references | Akaike, H.: Factor analysis and AIC. Psychome 52, 317–332 (1987) | es_ES |
dc.description.references | Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman and Hall, Belmont, CA (1984) | es_ES |
dc.description.references | Chang, L.Y., Wang, H.W.: Analisys of traffic injury severity: an application of non-parametric classification tree techniques. Accid. Anal. Prev. 38, 1019–1027 (2006) | es_ES |
dc.description.references | Cheung, K.-W., Kwok, J., Law, M.H., Tsui, K.-C.: Mining customer product ratings for personalized marketing. Decis. Support Syst. 35, 231–243 (2003) | es_ES |
dc.description.references | De Oña, J., de Oña, R., Calvo, F.J.: A classification tree approach to identify key factors of transit service quality. Expert Syst. Appl. 39, 11164–11171 (2012) | es_ES |
dc.description.references | De Oña, R., de Oña, J.: Analyzing transit service quality evolution using decision trees and gender segmentation. WIT Trans Built Environ 130, 611–621 (2013) | es_ES |
dc.description.references | De Oña, J., de Oña, R., Eboli, L., Mazzulla, G.: Perceived service quality in bus transit service: a structural equation approach. Transp. Policy 29, 219–226 (2013a) | es_ES |
dc.description.references | De Oña, J., López, G., Mujalli, R.O., Calvo, F.J.: Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accid. Anal. Prev. 51, 1–10 (2013b) | es_ES |
dc.description.references | De Oña, J., de Oña, R., Eboli, L., Mazzulla, G.: Heterogeneity in perceptions of service quality among groups of railway passengers. Int J Sustain Transp 9(8), 612–626 (2014a) | es_ES |
dc.description.references | De Oña, R., Eboli, L., Mazzulla, G.: Key factors affecting rail service quality. A decision tree approach. Transport 29(1), 75–83 (2014b) | es_ES |
dc.description.references | De Oña, J., de Oña, R., Garrido, C.: Extracting importance of attributes from customer satisfaction surveys with data mining: decision trees and neural networks. In: Proceedings of the Transportation Research Board 94th Annual Meeting, Washington, DC, 11–15 Jan 2015 | es_ES |
dc.description.references | Dell’Olio, L., Ibeas, A., Cecín, P.: Modelling user perception of bus transit quality. Transp. Policy 17(6), 388–397 (2010) | es_ES |
dc.description.references | Dell’Olio, L., Ibeas, A., Cecín, P.: The quality of service desired by public transport users. Transp. Policy 18(1), 217–227 (2011) | es_ES |
dc.description.references | Depaire, B., Wets, G., Vanhoof, K.: Traffic accident segmentation by means of latent class clustering. Accid. Anal. Prev. 40(4), 1257–1266 (2008) | es_ES |
dc.description.references | Duarte, A., Garcia, C., Giannarakis, G., Limão, S., Litinas, N., Polydoropoulou, A.: New approaches in transport planing: happiness and transport economics. Netnomics. Economic Research and Electronic Networking, Springer Netherlands, 1385–9587 (Print) 1573–7071 (Online) (2008) | es_ES |
dc.description.references | Eboli, L., Mazzulla, G.: Service quality attributes affecting customer satisfaction for bus transit. J Public Transp 10(3), 21–34 (2007) | es_ES |
dc.description.references | Eboli, L., Mazzulla, G.: Willingness-to-pay of public transport users for improvement in service quality. Eur Transp 38, 107–118 (2008) | es_ES |
dc.description.references | Eboli, L., Mazzulla, G.: How to capture the passengers’ point of view on a transit service through rating and choice options. Transp Rev 30, 435–450 (2010) | es_ES |
dc.description.references | Eboli, L., Mazzulla, G.: Performance indicators for an objective measure of public transport service quality. Eur Transp 51, 1–21 (2012) | es_ES |
dc.description.references | Ettema, D., Garling, T., Eriksson, L., Friman, M., Olsson, L.E., Fujii, S.: Satisfaction with travel and subjective well-being (SWB): development and tests of a measurement tool. Transp. Res. Part F 14, 167–175 (2011) | es_ES |
dc.description.references | Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41, 578–588 (1998) | es_ES |
dc.description.references | Gärling, T., Fujii, S.: Travel behavior modification: theories, methods, and programs. In: Kitamura, R., Yoshi, T., Yamamoto, T. (eds.), The Expanding Sphere of Travel Behavior Research. IATBR, 97–128 (2009) | es_ES |
dc.description.references | Garrido, C., de Oña, R., de Oña, J.: Neural networks for analysing service quality in public transportation. Expert Syst. Appl. 4, 6830–6838 (2014) | es_ES |
dc.description.references | Hair Jr, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Data Analysis. Prentice Hall, Englewood Cliffs, NJ (1998) | es_ES |
dc.description.references | Hensher, D.A., Stopher, P., Bullock, P.: Service quality: developing a service quality index in the provision of commercial bus contracts. Transp. Res. Part A 37, 499–517 (2003) | es_ES |
dc.description.references | Hensher, D.A., Mulley, C., Yahya, N.: Passenger experience with quality-enhanced bus service: the tyne and wear ‘superoute’ services. Transportation 37(2), 239–256 (2010) | es_ES |
dc.description.references | INPHORMM: Case Studies of Transport Information and Publicity/Marketing Campaigns to Reduce Car Use and Promote Cycling, Walking and Public Transport. INPHORMM Deliverable D2 to the European Commission. Transport Studies Group. University of Westminster, and Partners, London (1998) | es_ES |
dc.description.references | Irfan Syed, M., Mui, H.K.D., Shahbaz, S.: Service quality in rail transport of Pakistan: a passenger perspective? In: Paper presented at the 3rd SAICON: International Conference on Management, Business Ethics and Economics (ICMBEE), Lahore, Pakistan, 28–29 Dec 2011 | es_ES |
dc.description.references | Karlaftis, M., Tarko, A.: Heterogeneity considerations in accident modeling. Accid. Anal. Prev. 30(4), 425–433 (1998) | es_ES |
dc.description.references | Kashani, A.T., Mohaymany, A.S.: Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Saf. Sci. 49, 1314–1320 (2011) | es_ES |
dc.description.references | Ma, J., Kockelman, K.: Crash frequency and severity modeling using clustered data from Washington state. In: IEEE Intelligent Transportation Systems Conference, Toronto, Canadá (2006) | es_ES |
dc.description.references | Magidson, J., Vermunt, J.K.: Latent class models for clustering: a comparison with K-means. Can J Mark Res 20, 37–44 (2002) | es_ES |
dc.description.references | Mahmoud, M., Hine, J.: Using AHP to measure the perception gap between current and potential users of bus services. Transp Plan Technol 36(1), 4–23 (2013) | es_ES |
dc.description.references | McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000) | es_ES |
dc.description.references | Ory, D.T., Mokhtarian, P.L.: When is getting there half of the fun? Modelling the liking for travel. Transp. Res. Part A 39(2–3), 97–123 (2005) | es_ES |
dc.description.references | Outwater, M.L., Castleberry, S., Shiftan, Y., Ben-Akiva, M., Zhou, Y.S., Kuppam, A.: Attitudinal market segmentation approach to mode choice and ridership forecasting: structural equation modeling. Transp. Res. Rec. 1854, 32–42 (2003) | es_ES |
dc.description.references | Paquette, J., Bellavance, F., Cordeau, J., Laporte, G.: Measuring quality of service in dial-a-ride operations: the case of a canadian city. Transportation 39(3), 539–564 (2012) | es_ES |
dc.description.references | Parkan, C.: Measuring the operational performance of a public transit company. Int J Oper Prod Manag 22(6), 693–720 (2002) | es_ES |
dc.description.references | Raftery, A.E.: A note on Bayes factors for log-linear contingency table models with vague prior information. J. Roy. Stat. Soc. B 48, 249–250 (1986) | es_ES |
dc.description.references | Redman, L., Friman, M., Gärling, T., Hartig, T.: Quality attributes of public transport that attract car users: a research review. Transp. Policy 25, 119–127 (2013) | es_ES |
dc.description.references | Rietveld, P.: Six reasons why supply oriented indicators systematically overestimate service quality in public transport. Transp Rev 25(3), 319–328 (2005) | es_ES |
dc.description.references | Sanjust, B., Meloni, I., Spissu, E.: An impact assessment of a travel behavior change program: a case study of a light rail service in Cagliari, Italy. Case study of transport policy. ( http://dx.doi.org/10.1016/j.cstp.2014.04.002 ) (2014, in press) | es_ES |
dc.description.references | Sepúlveda, R.A.: Contribuciones al Análisis de Clases latentes en Presencia de Dependencia Local. Thesis, University of Salamanca (2004) | es_ES |
dc.description.references | TAPESTRY: Best Practice Guidelines (Deliverable 5). Report to the European Commission (DGTREN) Travel and Transport Research, Nottingham and Partners (2003) | es_ES |
dc.description.references | Vermunt, J.K., Magidson, J.: Latent GOLD 4.0 user’s guide. Statistical Innovations Inc., Belmont, MA (2005) | es_ES |
dc.description.references | Vesanen, J.: What is personalization? A conceptual framework. Eur. J. Mark. 41(5/6), 409–418 (2007) | es_ES |
dc.description.references | Xie, C., Lu, J., Parkany, E.: Work travel mode choice modelling with data mining. Transp. Res. Rec. 1854, 03–4338 (2003) | es_ES |