- -

Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De Oña, J. es_ES
dc.contributor.author De Oña, R. es_ES
dc.contributor.author López-Maldonado, Griselda es_ES
dc.date.accessioned 2019-05-13T20:27:28Z
dc.date.available 2019-05-13T20:27:28Z
dc.date.issued 2015 es_ES
dc.identifier.issn 0049-4488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120461
dc.description.abstract [EN] A transit service quality study based on cluster analysis was performed to extract detailed customer profiles sharing similar appraisals concerning the service. This approach made it possible to detect specific requirements and needs regarding the quality of service and to personalize the marketing strategy. Data from various customer satisfaction surveys conducted by the Transport Consortium of Granada (Spain) were analyzed to distinguish these groups; a decision tree methodology was used to identify the most important service quality attributes influencing passengers overall evaluations. Cluster analysis identified four groups of passengers. Comparisons using decision trees among the overall sample of all users and the different groups of passengers identified by cluster analysis led to the discovery of differences in the key attributes encompassed by perceived quality. es_ES
dc.description.sponsorship The authors also acknowledge the Granada Consorcio de Transportes for making the data set available for this study. Griselda Lopez wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for their scholarship to train teachers and researchers in Deficit Areas. Rocio de Ona wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for the Excellence Research Project denominated "Q-METROBUS-Quality of service indicator for METROpolitan public BUS transport services'', co-funded with Feder.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Transportation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Service quality es_ES
dc.subject Personalized marketing es_ES
dc.subject Cluster analysis es_ES
dc.subject Decision trees es_ES
dc.subject CART es_ES
dc.subject Bus transit es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11116-015-9615-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation De Oña, J.; De Oña, R.; López-Maldonado, G. (2015). Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation. Transportation. 43(5):725-747. https://doi.org/10.1007/s11116-015-9615-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11116-015-9615-0 es_ES
dc.description.upvformatpinicio 725 es_ES
dc.description.upvformatpfin 747 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\338725 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.description.references Abou Zeid, M., Ben-Akiva, M.: A model of travel happiness and mode switching, in choice modelling: the state-of-the-art and the state-of-practice. In: Hess S., Daly A. (eds.) Proceedings from the Inaugural International Choice Modelling Conference, pp. 289–307. Emerald Group Publishing Limited (2010) es_ES
dc.description.references Akaike, H.: Factor analysis and AIC. Psychome 52, 317–332 (1987) es_ES
dc.description.references Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman and Hall, Belmont, CA (1984) es_ES
dc.description.references Chang, L.Y., Wang, H.W.: Analisys of traffic injury severity: an application of non-parametric classification tree techniques. Accid. Anal. Prev. 38, 1019–1027 (2006) es_ES
dc.description.references Cheung, K.-W., Kwok, J., Law, M.H., Tsui, K.-C.: Mining customer product ratings for personalized marketing. Decis. Support Syst. 35, 231–243 (2003) es_ES
dc.description.references De Oña, J., de Oña, R., Calvo, F.J.: A classification tree approach to identify key factors of transit service quality. Expert Syst. Appl. 39, 11164–11171 (2012) es_ES
dc.description.references De Oña, R., de Oña, J.: Analyzing transit service quality evolution using decision trees and gender segmentation. WIT Trans Built Environ 130, 611–621 (2013) es_ES
dc.description.references De Oña, J., de Oña, R., Eboli, L., Mazzulla, G.: Perceived service quality in bus transit service: a structural equation approach. Transp. Policy 29, 219–226 (2013a) es_ES
dc.description.references De Oña, J., López, G., Mujalli, R.O., Calvo, F.J.: Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accid. Anal. Prev. 51, 1–10 (2013b) es_ES
dc.description.references De Oña, J., de Oña, R., Eboli, L., Mazzulla, G.: Heterogeneity in perceptions of service quality among groups of railway passengers. Int J Sustain Transp 9(8), 612–626 (2014a) es_ES
dc.description.references De Oña, R., Eboli, L., Mazzulla, G.: Key factors affecting rail service quality. A decision tree approach. Transport 29(1), 75–83 (2014b) es_ES
dc.description.references De Oña, J., de Oña, R., Garrido, C.: Extracting importance of attributes from customer satisfaction surveys with data mining: decision trees and neural networks. In: Proceedings of the Transportation Research Board 94th Annual Meeting, Washington, DC, 11–15 Jan 2015 es_ES
dc.description.references Dell’Olio, L., Ibeas, A., Cecín, P.: Modelling user perception of bus transit quality. Transp. Policy 17(6), 388–397 (2010) es_ES
dc.description.references Dell’Olio, L., Ibeas, A., Cecín, P.: The quality of service desired by public transport users. Transp. Policy 18(1), 217–227 (2011) es_ES
dc.description.references Depaire, B., Wets, G., Vanhoof, K.: Traffic accident segmentation by means of latent class clustering. Accid. Anal. Prev. 40(4), 1257–1266 (2008) es_ES
dc.description.references Duarte, A., Garcia, C., Giannarakis, G., Limão, S., Litinas, N., Polydoropoulou, A.: New approaches in transport planing: happiness and transport economics. Netnomics. Economic Research and Electronic Networking, Springer Netherlands, 1385–9587 (Print) 1573–7071 (Online) (2008) es_ES
dc.description.references Eboli, L., Mazzulla, G.: Service quality attributes affecting customer satisfaction for bus transit. J Public Transp 10(3), 21–34 (2007) es_ES
dc.description.references Eboli, L., Mazzulla, G.: Willingness-to-pay of public transport users for improvement in service quality. Eur Transp 38, 107–118 (2008) es_ES
dc.description.references Eboli, L., Mazzulla, G.: How to capture the passengers’ point of view on a transit service through rating and choice options. Transp Rev 30, 435–450 (2010) es_ES
dc.description.references Eboli, L., Mazzulla, G.: Performance indicators for an objective measure of public transport service quality. Eur Transp 51, 1–21 (2012) es_ES
dc.description.references Ettema, D., Garling, T., Eriksson, L., Friman, M., Olsson, L.E., Fujii, S.: Satisfaction with travel and subjective well-being (SWB): development and tests of a measurement tool. Transp. Res. Part F 14, 167–175 (2011) es_ES
dc.description.references Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41, 578–588 (1998) es_ES
dc.description.references Gärling, T., Fujii, S.: Travel behavior modification: theories, methods, and programs. In: Kitamura, R., Yoshi, T., Yamamoto, T. (eds.), The Expanding Sphere of Travel Behavior Research. IATBR, 97–128 (2009) es_ES
dc.description.references Garrido, C., de Oña, R., de Oña, J.: Neural networks for analysing service quality in public transportation. Expert Syst. Appl. 4, 6830–6838 (2014) es_ES
dc.description.references Hair Jr, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Data Analysis. Prentice Hall, Englewood Cliffs, NJ (1998) es_ES
dc.description.references Hensher, D.A., Stopher, P., Bullock, P.: Service quality: developing a service quality index in the provision of commercial bus contracts. Transp. Res. Part A 37, 499–517 (2003) es_ES
dc.description.references Hensher, D.A., Mulley, C., Yahya, N.: Passenger experience with quality-enhanced bus service: the tyne and wear ‘superoute’ services. Transportation 37(2), 239–256 (2010) es_ES
dc.description.references INPHORMM: Case Studies of Transport Information and Publicity/Marketing Campaigns to Reduce Car Use and Promote Cycling, Walking and Public Transport. INPHORMM Deliverable D2 to the European Commission. Transport Studies Group. University of Westminster, and Partners, London (1998) es_ES
dc.description.references Irfan Syed, M., Mui, H.K.D., Shahbaz, S.: Service quality in rail transport of Pakistan: a passenger perspective? In: Paper presented at the 3rd SAICON: International Conference on Management, Business Ethics and Economics (ICMBEE), Lahore, Pakistan, 28–29 Dec 2011 es_ES
dc.description.references Karlaftis, M., Tarko, A.: Heterogeneity considerations in accident modeling. Accid. Anal. Prev. 30(4), 425–433 (1998) es_ES
dc.description.references Kashani, A.T., Mohaymany, A.S.: Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Saf. Sci. 49, 1314–1320 (2011) es_ES
dc.description.references Ma, J., Kockelman, K.: Crash frequency and severity modeling using clustered data from Washington state. In: IEEE Intelligent Transportation Systems Conference, Toronto, Canadá (2006) es_ES
dc.description.references Magidson, J., Vermunt, J.K.: Latent class models for clustering: a comparison with K-means. Can J Mark Res 20, 37–44 (2002) es_ES
dc.description.references Mahmoud, M., Hine, J.: Using AHP to measure the perception gap between current and potential users of bus services. Transp Plan Technol 36(1), 4–23 (2013) es_ES
dc.description.references McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000) es_ES
dc.description.references Ory, D.T., Mokhtarian, P.L.: When is getting there half of the fun? Modelling the liking for travel. Transp. Res. Part A 39(2–3), 97–123 (2005) es_ES
dc.description.references Outwater, M.L., Castleberry, S., Shiftan, Y., Ben-Akiva, M., Zhou, Y.S., Kuppam, A.: Attitudinal market segmentation approach to mode choice and ridership forecasting: structural equation modeling. Transp. Res. Rec. 1854, 32–42 (2003) es_ES
dc.description.references Paquette, J., Bellavance, F., Cordeau, J., Laporte, G.: Measuring quality of service in dial-a-ride operations: the case of a canadian city. Transportation 39(3), 539–564 (2012) es_ES
dc.description.references Parkan, C.: Measuring the operational performance of a public transit company. Int J Oper Prod Manag 22(6), 693–720 (2002) es_ES
dc.description.references Raftery, A.E.: A note on Bayes factors for log-linear contingency table models with vague prior information. J. Roy. Stat. Soc. B 48, 249–250 (1986) es_ES
dc.description.references Redman, L., Friman, M., Gärling, T., Hartig, T.: Quality attributes of public transport that attract car users: a research review. Transp. Policy 25, 119–127 (2013) es_ES
dc.description.references Rietveld, P.: Six reasons why supply oriented indicators systematically overestimate service quality in public transport. Transp Rev 25(3), 319–328 (2005) es_ES
dc.description.references Sanjust, B., Meloni, I., Spissu, E.: An impact assessment of a travel behavior change program: a case study of a light rail service in Cagliari, Italy. Case study of transport policy. ( http://dx.doi.org/10.1016/j.cstp.2014.04.002 ) (2014, in press) es_ES
dc.description.references Sepúlveda, R.A.: Contribuciones al Análisis de Clases latentes en Presencia de Dependencia Local. Thesis, University of Salamanca (2004) es_ES
dc.description.references TAPESTRY: Best Practice Guidelines (Deliverable 5). Report to the European Commission (DGTREN) Travel and Transport Research, Nottingham and Partners (2003) es_ES
dc.description.references Vermunt, J.K., Magidson, J.: Latent GOLD 4.0 user’s guide. Statistical Innovations Inc., Belmont, MA (2005) es_ES
dc.description.references Vesanen, J.: What is personalization? A conceptual framework. Eur. J. Mark. 41(5/6), 409–418 (2007) es_ES
dc.description.references Xie, C., Lu, J., Parkany, E.: Work travel mode choice modelling with data mining. Transp. Res. Rec. 1854, 03–4338 (2003) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem