- -

Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents

Show simple item record

Files in this item

dc.contributor.author Martí Calatayud, Manuel César es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2019-05-16T20:01:32Z
dc.date.available 2019-05-16T20:01:32Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120596
dc.description.abstract [EN] Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchangemembranes has increased. Clear examples of such applications are the recovery of valuable metal ions from industrial effluents, such as electronic wastes or mining industries. Weak electrolytes give rise to a variety of ions with different valence, charge sign and transport properties. Moreover, development of concentration polarization under the application of an electric field promotes changes in the chemical equilibrium, thus making more complex understanding of mass transfer phenomena in such systems. This investigation presents a set of experiments conducted with salts of multivalent metals with the aim to provide better understanding on the involved mass transfer phenomena. Chronopotentiometric experiments and current-voltage characteristics confirm that shifts in chemical equilibria can take place simultaneous to the activation of overlimiting mass transfer mechanisms, that is, electroconvection and water dissociation. Electroconvection has been proven to affect the type of precipitates formed at the membrane surface thus suppressing the simultaneous dissociation of water. For some electrolytes, shifts in the chemical equilibria forced by an imposed electric field generate new charge carriers at specific current regimes, thus reducing the system resistance. es_ES
dc.description.sponsorship Manuel Cesar Marti-Calatayud acknowledges the funding received from Generalitat Valenciana (ASPOSTD/2017/059).
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Overlimiting mass transfer es_ES
dc.subject Electroconvection es_ES
dc.subject Water dissociation es_ES
dc.subject Electrodialysis es_ES
dc.subject Ion transport es_ES
dc.subject Weak electrolytes es_ES
dc.subject Multivalent ion transport es_ES
dc.subject Electromembrane processes es_ES
dc.subject Ion-exchange membranes es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app8091566 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Martí Calatayud, MC.; García Gabaldón, M.; Pérez-Herranz, V. (2018). Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents. Applied Sciences (Basel). 8(9):1-13. https://doi.org/10.3390/app8091566 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/app8091566 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\384657 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Barry, E., McBride, S. P., Jaeger, H. M., & Lin, X.-M. (2014). Ion transport controlled by nanoparticle-functionalized membranes. Nature Communications, 5(1). doi:10.1038/ncomms6847 es_ES
dc.description.references Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., … Xu, T. (2017). Ion exchange membranes: New developments and applications. Journal of Membrane Science, 522, 267-291. doi:10.1016/j.memsci.2016.09.033 es_ES
dc.description.references Zhao, W.-Y., Zhou, M., Yan, B., Sun, X., Liu, Y., Wang, Y., … Zhang, Y. (2018). Waste Conversion and Resource Recovery from Wastewater by Ion Exchange Membranes: State-of-the-Art and Perspective. Industrial & Engineering Chemistry Research, 57(18), 6025-6039. doi:10.1021/acs.iecr.8b00519 es_ES
dc.description.references Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., … Radenovic, A. (2016). Single-layer MoS2 nanopores as nanopower generators. Nature, 536(7615), 197-200. doi:10.1038/nature18593 es_ES
dc.description.references Zhu, X., Hatzell, M. C., Cusick, R. D., & Logan, B. E. (2013). Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications, 31, 52-55. doi:10.1016/j.elecom.2013.03.010 es_ES
dc.description.references Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. doi:10.1016/j.desal.2010.04.069 es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 es_ES
dc.description.references Chen, D., Hickner, M. A., Agar, E., & Kumbur, E. C. (2013). Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochemistry Communications, 26, 37-40. doi:10.1016/j.elecom.2012.10.007 es_ES
dc.description.references Hou, L., Wu, B., Yu, D., Wang, S., Shehzad, M. A., Fu, R., … Xu, T. (2018). Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation. Journal of Membrane Science, 557, 49-57. doi:10.1016/j.memsci.2018.04.022 es_ES
dc.description.references Pham, S. V., Kwon, H., Kim, B., White, J. K., Lim, G., & Han, J. (2016). Helical vortex formation in three-dimensional electrochemical systems with ion-selective membranes. Physical Review E, 93(3). doi:10.1103/physreve.93.033114 es_ES
dc.description.references Belashova, E. D., Melnik, N. A., Pismenskaya, N. D., Shevtsova, K. A., Nebavsky, A. V., Lebedev, K. A., & Nikonenko, V. V. (2012). Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes. Electrochimica Acta, 59, 412-423. doi:10.1016/j.electacta.2011.10.077 es_ES
dc.description.references Nebavskaya, K. A., Sarapulova, V. V., Sabbatovskiy, K. G., Sobolev, V. D., Pismenskaya, N. D., Sistat, P., … Nikonenko, V. V. (2017). Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents. Journal of Membrane Science, 523, 36-44. doi:10.1016/j.memsci.2016.09.038 es_ES
dc.description.references Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 es_ES
dc.description.references Nikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1-2), 101-123. doi:10.1016/j.cis.2010.08.001 es_ES
dc.description.references Pismenskaya, N. D., Belova, E. I., Nikonenko, V. V., & Larchet, C. (2008). Electrical conductivity of cation-and anion-exchange membranes in ampholyte solutions. Russian Journal of Electrochemistry, 44(11), 1285-1291. doi:10.1134/s1023193508110141 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d es_ES
dc.description.references Cowan, D. A., & Brown, J. H. (1959). Effect of Turbulence on Limiting Current in Electrodialysis Cells. Industrial & Engineering Chemistry, 51(12), 1445-1448. doi:10.1021/ie50600a026 es_ES
dc.description.references Sarapulova, V., Nevakshenova, E., Pismenskaya, N., Dammak, L., & Nikonenko, V. (2015). Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: Effect of ampholyte nature. Journal of Membrane Science, 479, 28-38. doi:10.1016/j.memsci.2015.01.015 es_ES
dc.description.references Tanaka, Y. (2007). Acceleration of water dissociation generated in an ion exchange membrane. Journal of Membrane Science, 303(1-2), 234-243. doi:10.1016/j.memsci.2007.07.020 es_ES
dc.description.references Mel’nikov, S. S., Shapovalova, O. V., Shel’deshov, N. V., & Zabolotskii, V. I. (2011). Effect of d-metal hydroxides on water dissociation in bipolar membranes. Petroleum Chemistry, 51(7), 577-584. doi:10.1134/s0965544111070097 es_ES
dc.description.references Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl 2 and MgCl 2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195 es_ES


This item appears in the following Collection(s)

Show simple item record