- -

Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents

Mostrar el registro completo del ítem

Martí Calatayud, MC.; García Gabaldón, M.; Pérez-Herranz, V. (2018). Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents. Applied Sciences (Basel). 8(9):1-13. https://doi.org/10.3390/app8091566

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120596

Ficheros en el ítem

Metadatos del ítem

Título: Mass transfer phenomena during electrodialysis of multivalent ions: chemical equilibria and overlimiting currents
Autor: Martí Calatayud, Manuel César García Gabaldón, Montserrat Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchangemembranes ...[+]
Palabras clave: Overlimiting mass transfer , Electroconvection , Water dissociation , Electrodialysis , Ion transport , Weak electrolytes , Multivalent ion transport , Electromembrane processes , Ion-exchange membranes
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences (Basel). (eissn: 2076-3417 )
DOI: 10.3390/app8091566
Editorial:
MDPI AG
Versión del editor: http://doi.org/10.3390/app8091566
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/
Agradecimientos:
Manuel Cesar Marti-Calatayud acknowledges the funding received from Generalitat Valenciana (ASPOSTD/2017/059).
Tipo: Artículo

References

Barry, E., McBride, S. P., Jaeger, H. M., & Lin, X.-M. (2014). Ion transport controlled by nanoparticle-functionalized membranes. Nature Communications, 5(1). doi:10.1038/ncomms6847

Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., … Xu, T. (2017). Ion exchange membranes: New developments and applications. Journal of Membrane Science, 522, 267-291. doi:10.1016/j.memsci.2016.09.033

Zhao, W.-Y., Zhou, M., Yan, B., Sun, X., Liu, Y., Wang, Y., … Zhang, Y. (2018). Waste Conversion and Resource Recovery from Wastewater by Ion Exchange Membranes: State-of-the-Art and Perspective. Industrial & Engineering Chemistry Research, 57(18), 6025-6039. doi:10.1021/acs.iecr.8b00519 [+]
Barry, E., McBride, S. P., Jaeger, H. M., & Lin, X.-M. (2014). Ion transport controlled by nanoparticle-functionalized membranes. Nature Communications, 5(1). doi:10.1038/ncomms6847

Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., … Xu, T. (2017). Ion exchange membranes: New developments and applications. Journal of Membrane Science, 522, 267-291. doi:10.1016/j.memsci.2016.09.033

Zhao, W.-Y., Zhou, M., Yan, B., Sun, X., Liu, Y., Wang, Y., … Zhang, Y. (2018). Waste Conversion and Resource Recovery from Wastewater by Ion Exchange Membranes: State-of-the-Art and Perspective. Industrial & Engineering Chemistry Research, 57(18), 6025-6039. doi:10.1021/acs.iecr.8b00519

Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., … Radenovic, A. (2016). Single-layer MoS2 nanopores as nanopower generators. Nature, 536(7615), 197-200. doi:10.1038/nature18593

Zhu, X., Hatzell, M. C., Cusick, R. D., & Logan, B. E. (2013). Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications, 31, 52-55. doi:10.1016/j.elecom.2013.03.010

Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. doi:10.1016/j.desal.2010.04.069

Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031

Chen, D., Hickner, M. A., Agar, E., & Kumbur, E. C. (2013). Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochemistry Communications, 26, 37-40. doi:10.1016/j.elecom.2012.10.007

Hou, L., Wu, B., Yu, D., Wang, S., Shehzad, M. A., Fu, R., … Xu, T. (2018). Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation. Journal of Membrane Science, 557, 49-57. doi:10.1016/j.memsci.2018.04.022

Pham, S. V., Kwon, H., Kim, B., White, J. K., Lim, G., & Han, J. (2016). Helical vortex formation in three-dimensional electrochemical systems with ion-selective membranes. Physical Review E, 93(3). doi:10.1103/physreve.93.033114

Belashova, E. D., Melnik, N. A., Pismenskaya, N. D., Shevtsova, K. A., Nebavsky, A. V., Lebedev, K. A., & Nikonenko, V. V. (2012). Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes. Electrochimica Acta, 59, 412-423. doi:10.1016/j.electacta.2011.10.077

Nebavskaya, K. A., Sarapulova, V. V., Sabbatovskiy, K. G., Sobolev, V. D., Pismenskaya, N. D., Sistat, P., … Nikonenko, V. V. (2017). Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents. Journal of Membrane Science, 523, 36-44. doi:10.1016/j.memsci.2016.09.038

Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510

Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058

Nikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1-2), 101-123. doi:10.1016/j.cis.2010.08.001

Pismenskaya, N. D., Belova, E. I., Nikonenko, V. V., & Larchet, C. (2008). Electrical conductivity of cation-and anion-exchange membranes in ampholyte solutions. Russian Journal of Electrochemistry, 44(11), 1285-1291. doi:10.1134/s1023193508110141

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d

Cowan, D. A., & Brown, J. H. (1959). Effect of Turbulence on Limiting Current in Electrodialysis Cells. Industrial & Engineering Chemistry, 51(12), 1445-1448. doi:10.1021/ie50600a026

Sarapulova, V., Nevakshenova, E., Pismenskaya, N., Dammak, L., & Nikonenko, V. (2015). Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: Effect of ampholyte nature. Journal of Membrane Science, 479, 28-38. doi:10.1016/j.memsci.2015.01.015

Tanaka, Y. (2007). Acceleration of water dissociation generated in an ion exchange membrane. Journal of Membrane Science, 303(1-2), 234-243. doi:10.1016/j.memsci.2007.07.020

Mel’nikov, S. S., Shapovalova, O. V., Shel’deshov, N. V., & Zabolotskii, V. I. (2011). Effect of d-metal hydroxides on water dissociation in bipolar membranes. Petroleum Chemistry, 51(7), 577-584. doi:10.1134/s0965544111070097

Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl 2 and MgCl 2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem