- -

Relative Peripheral Myopia Induced by Fractal Contact Lenses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Relative Peripheral Myopia Induced by Fractal Contact Lenses

Show full item record

Rodríguez-Vallejo, M.; Montagud-Martínez, D.; Monsoriu Serra, JA.; Ferrando Martín, V.; Furlan, WD. (2018). Relative Peripheral Myopia Induced by Fractal Contact Lenses. Current Eye Research. 43(12):1514-1521. https://doi.org/10.1080/02713683.2018.1507043

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120913

Files in this item

Item Metadata

Title: Relative Peripheral Myopia Induced by Fractal Contact Lenses
Author: Rodríguez-Vallejo, Manuel Montagud-Martínez, Diego Monsoriu Serra, Juan Antonio Ferrando Martín, Vicente Furlan, Walter D.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Purpose: To assess the peripheral refraction induced by Fractal Contact Lenses (FCLs) in myopic eyes by means of a two-dimensional Relative Peripheral Refractive Error (RPRE) map. Materials and Methods: This study ...[+]
Subjects: Myopia progression , Contact lenses , Fractal , Peripheral refractive error , Two-dimensional maps
Copyrigths: Reserva de todos los derechos
Source:
Current Eye Research. (issn: 0271-3683 )
DOI: 10.1080/02713683.2018.1507043
Publisher:
Informa UK (Informa Healthcare)
Publisher version: http://doi.org/ 10.1080/02713683.2018.1507043
Project ID:
Generalitat Valenciana/PROMETEOII/2014/072
MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /DPI2015-71256-R
Thanks:
This work was founded by Ministerio de Economía y Competitividad FEDER (Grant DPI2015-71256-R), and by Generalitat Valenciana (Grant PROMETEOII-2014-072), Spain.
Type: Artículo

References

Wolffsohn, J. S., Calossi, A., Cho, P., Gifford, K., Jones, L., Li, M., … Zvirgzdina, M. (2016). Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens and Anterior Eye, 39(2), 106-116. doi:10.1016/j.clae.2016.02.005

Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., … Qu, J. (2016). Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology, 123(4), 697-708. doi:10.1016/j.ophtha.2015.11.010

Walline, J. J. (2016). Myopia Control. Eye & Contact Lens: Science & Clinical Practice, 42(1), 3-8. doi:10.1097/icl.0000000000000207 [+]
Wolffsohn, J. S., Calossi, A., Cho, P., Gifford, K., Jones, L., Li, M., … Zvirgzdina, M. (2016). Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens and Anterior Eye, 39(2), 106-116. doi:10.1016/j.clae.2016.02.005

Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., … Qu, J. (2016). Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology, 123(4), 697-708. doi:10.1016/j.ophtha.2015.11.010

Walline, J. J. (2016). Myopia Control. Eye & Contact Lens: Science & Clinical Practice, 42(1), 3-8. doi:10.1097/icl.0000000000000207

González-Méijome, J. M., Faria-Ribeiro, M. A., Lopes-Ferreira, D. P., Fernandes, P., Carracedo, G., & Queiros, A. (2015). Changes in Peripheral Refractive Profile after Orthokeratology for Different Degrees of Myopia. Current Eye Research, 41(2), 199-207. doi:10.3109/02713683.2015.1009634

Sankaridurg, P. (2017). Contact lenses to slow progression of myopia. Clinical and Experimental Optometry, 100(5), 432-437. doi:10.1111/cxo.12584

Hiraoka, T., Kotsuka, J., Kakita, T., Okamoto, F., & Oshika, T. (2017). Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Scientific Reports, 7(1). doi:10.1038/s41598-017-08177-6

Atchison, D. A., & Rosén, R. (2016). The Possible Role of Peripheral Refraction in Development of Myopia. Optometry and Vision Science, 93(9), 1042-1044. doi:10.1097/opx.0000000000000979

Troilo, D. (2016). The Case for Lens Treatments in the Control of Myopia Progression. Optometry and Vision Science, 93(9), 1045-1048. doi:10.1097/opx.0000000000000916

Turnbull, P. R. K., Munro, O. J., & Phillips, J. R. (2016). Contact Lens Methods for Clinical Myopia Control. Optometry and Vision Science, 93(9), 1120-1126. doi:10.1097/opx.0000000000000957

Rodriguez-Vallejo, M., Benlloch, J., Pons, A., Monsoriu, J. A., & Furlan, W. D. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research, 39(12), 1151-1160. doi:10.3109/02713683.2014.903498

Charman, W. N. (2011). Keeping the World in Focus: How Might This Be Achieved? Optometry and Vision Science, 88(3), 373-376. doi:10.1097/opx.0b013e31820b052b

Kee, C.-S., Hung, L.-F., Qiao-Grider, Y., Roorda, A., & Smith, E. L. (2004). Effects of Optically Imposed Astigmatism on Emmetropization in Infant Monkeys. Investigative Opthalmology & Visual Science, 45(6), 1647. doi:10.1167/iovs.03-0841

Chu, C. H. G., & Kee, C. S. (2015). Effects of Optically Imposed Astigmatism on Early Eye Growth in Chicks. PLOS ONE, 10(2), e0117729. doi:10.1371/journal.pone.0117729

Monsoriu, J. A., Saavedra, G., & Furlan, W. D. (2004). Fractal zone plates with variable lacunarity. Optics Express, 12(18), 4227. doi:10.1364/opex.12.004227

Rodríguez-Vallejo, M., Montagud, D., Monsoriu, J. A., & Furlan, W. D. (2017). On the power profiles of contact lenses measured with NIMO TR1504. Journal of Optometry, 10(4), 265-266. doi:10.1016/j.optom.2016.10.002

Plainis, S., Atchison, D. A., & Charman, W. N. (2013). Power Profiles of Multifocal Contact Lenses and Their Interpretation. Optometry and Vision Science, 90(10), 1066-1077. doi:10.1097/opx.0000000000000030

Calossi, A. (2007). Corneal Asphericity and Spherical Aberration. Journal of Refractive Surgery, 23(5), 505-514. doi:10.3928/1081-597x-20070501-15

Lopes-Ferreira, D. P., Neves, H. I. F., Faria-Ribeiro, M., Queirós, A., Fernandes, P. R. B., & González-Méijome, J. M. (2015). Peripheral refraction with eye and head rotation with contact lenses. Contact Lens and Anterior Eye, 38(2), 104-109. doi:10.1016/j.clae.2014.11.201

THIBOS, L. N., WHEELER, W., & HORNER, D. (1997). Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error. Optometry and Vision Science, 74(6), 367-375. doi:10.1097/00006324-199706000-00019

Ehsaei, A., Mallen, E. A. H., Chisholm, C. M., & Pacey, I. E. (2011). Cross-sectional Sample of Peripheral Refraction in Four Meridians in Myopes and Emmetropes. Investigative Opthalmology & Visual Science, 52(10), 7574. doi:10.1167/iovs.11-7635

Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2017). Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic and Physiological Optics, 37(2), 151-159. doi:10.1111/opo.12354

Verkicharla, P. K., Suheimat, M., Schmid, K. L., & Atchison, D. A. (2016). Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia. Optometry and Vision Science, 93(9), 1072-1078. doi:10.1097/opx.0000000000000905

Atchison, D. A. (2006). Optical models for human myopic eyes. Vision Research, 46(14), 2236-2250. doi:10.1016/j.visres.2006.01.004

He, J. C. (2014). Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations. Ophthalmic and Physiological Optics, 34(3), 321-330. doi:10.1111/opo.12127

Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2016). Mirror Symmetry of Peripheral Monochromatic Aberrations in Fellow Eyes of Isomyopes and Anisomyopes. Investigative Opthalmology & Visual Science, 57(7), 3422. doi:10.1167/iovs.16-19267

Shen, G., Qi, Q., & Ma, X. (2016). Effect of Moisture Chamber Spectacles on Tear Functions in Dry Eye Disease. Optometry and Vision Science, 93(2), 158-164. doi:10.1097/opx.0000000000000778

[-]

This item appears in the following Collection(s)

Show full item record