Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez-Vallejo, Manuel | es_ES |
dc.contributor.author | Montagud-Martínez, Diego | es_ES |
dc.contributor.author | Monsoriu Serra, Juan Antonio | es_ES |
dc.contributor.author | Ferrando Martín, Vicente | es_ES |
dc.contributor.author | Furlan, Walter D. | es_ES |
dc.date.accessioned | 2019-05-22T20:27:39Z | |
dc.date.available | 2019-05-22T20:27:39Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0271-3683 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120913 | |
dc.description.abstract | [EN] Purpose: To assess the peripheral refraction induced by Fractal Contact Lenses (FCLs) in myopic eyes by means of a two-dimensional Relative Peripheral Refractive Error (RPRE) map. Materials and Methods: This study involved 26 myopic subjects ranging from -0.50 D to -7.00 D. FCLs prototypes were custom-manufactured and characterized. Corneal topographies were taken in order to assess correlations between corneal asphericity and lens decentration. Two-dimensional RPREs were measured with an open-field autorefractor at 67 points, covering the central 60 x 30 degrees of the visual field. The bidimensional RPRE vector components: M, J(0) and J(45) of the difference between the values obtained with and without the FCLs in the eye were obtained. Additionally, the FCL-induced peripheral refraction in tangential and sagittal planes was computed along the horizontal meridian. Results: Induced by the FCLs, significant differences for all vector components were found in the peripheral retina. FCLs were decentered a mean of 0.7 +/- 0.19 mm to the temporal cornea. The two-dimensional RPRE maps manifested the FCLs decentration. In particular, M varied asymmetrically between nasal and temporal retina after fitting the FCLs with a significant increment of the myopic shift beyond 10o (p < 0.05). No correlations were found between the amount of lens decentration and the asphericity of the cornea along temporal and nasal sides. However, significant correlations were found between the corneal asphericity and vector components of the RPRE in naked eyes. FCLs produced an increasing myopic shift in tangential and sagittal power errors along the horizontal meridian. Conclusions: As predicted by ray-tracing simulations, FCLs fitted in myopic eyes produce a myopic shift of the RPRE. The two-dimensional RPRE maps show information about the lens performance that is hidden in the conventional one-dimensional meridional representations. | es_ES |
dc.description.sponsorship | This work was founded by Ministerio de Economía y Competitividad FEDER (Grant DPI2015-71256-R), and by Generalitat Valenciana (Grant PROMETEOII-2014-072), Spain. | |
dc.language | Inglés | es_ES |
dc.publisher | Informa UK (Informa Healthcare) | es_ES |
dc.relation.ispartof | Current Eye Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Myopia progression | es_ES |
dc.subject | Contact lenses | es_ES |
dc.subject | Fractal | es_ES |
dc.subject | Peripheral refractive error | es_ES |
dc.subject | Two-dimensional maps | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Relative Peripheral Myopia Induced by Fractal Contact Lenses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/02713683.2018.1507043 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F072/ES/Grupo de fibras ópticas y procesado de señal/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-71256-R/ES/DISEÑO Y OPTIMIZACION DE LENTES INTRACORNEALES DIFRACTIVAS MULTIFOCALES PARA EL TRATAMIENTO DE LA PRESBICIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Rodríguez-Vallejo, M.; Montagud-Martínez, D.; Monsoriu Serra, JA.; Ferrando Martín, V.; Furlan, WD. (2018). Relative Peripheral Myopia Induced by Fractal Contact Lenses. Current Eye Research. 43(12):1514-1521. https://doi.org/10.1080/02713683.2018.1507043 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/ 10.1080/02713683.2018.1507043 | es_ES |
dc.description.upvformatpinicio | 1514 | es_ES |
dc.description.upvformatpfin | 1521 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 30089428 | |
dc.relation.pasarela | S\368740 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Wolffsohn, J. S., Calossi, A., Cho, P., Gifford, K., Jones, L., Li, M., … Zvirgzdina, M. (2016). Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens and Anterior Eye, 39(2), 106-116. doi:10.1016/j.clae.2016.02.005 | es_ES |
dc.description.references | Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., … Qu, J. (2016). Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology, 123(4), 697-708. doi:10.1016/j.ophtha.2015.11.010 | es_ES |
dc.description.references | Walline, J. J. (2016). Myopia Control. Eye & Contact Lens: Science & Clinical Practice, 42(1), 3-8. doi:10.1097/icl.0000000000000207 | es_ES |
dc.description.references | González-Méijome, J. M., Faria-Ribeiro, M. A., Lopes-Ferreira, D. P., Fernandes, P., Carracedo, G., & Queiros, A. (2015). Changes in Peripheral Refractive Profile after Orthokeratology for Different Degrees of Myopia. Current Eye Research, 41(2), 199-207. doi:10.3109/02713683.2015.1009634 | es_ES |
dc.description.references | Sankaridurg, P. (2017). Contact lenses to slow progression of myopia. Clinical and Experimental Optometry, 100(5), 432-437. doi:10.1111/cxo.12584 | es_ES |
dc.description.references | Hiraoka, T., Kotsuka, J., Kakita, T., Okamoto, F., & Oshika, T. (2017). Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Scientific Reports, 7(1). doi:10.1038/s41598-017-08177-6 | es_ES |
dc.description.references | Atchison, D. A., & Rosén, R. (2016). The Possible Role of Peripheral Refraction in Development of Myopia. Optometry and Vision Science, 93(9), 1042-1044. doi:10.1097/opx.0000000000000979 | es_ES |
dc.description.references | Troilo, D. (2016). The Case for Lens Treatments in the Control of Myopia Progression. Optometry and Vision Science, 93(9), 1045-1048. doi:10.1097/opx.0000000000000916 | es_ES |
dc.description.references | Turnbull, P. R. K., Munro, O. J., & Phillips, J. R. (2016). Contact Lens Methods for Clinical Myopia Control. Optometry and Vision Science, 93(9), 1120-1126. doi:10.1097/opx.0000000000000957 | es_ES |
dc.description.references | Rodriguez-Vallejo, M., Benlloch, J., Pons, A., Monsoriu, J. A., & Furlan, W. D. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research, 39(12), 1151-1160. doi:10.3109/02713683.2014.903498 | es_ES |
dc.description.references | Charman, W. N. (2011). Keeping the World in Focus: How Might This Be Achieved? Optometry and Vision Science, 88(3), 373-376. doi:10.1097/opx.0b013e31820b052b | es_ES |
dc.description.references | Kee, C.-S., Hung, L.-F., Qiao-Grider, Y., Roorda, A., & Smith, E. L. (2004). Effects of Optically Imposed Astigmatism on Emmetropization in Infant Monkeys. Investigative Opthalmology & Visual Science, 45(6), 1647. doi:10.1167/iovs.03-0841 | es_ES |
dc.description.references | Chu, C. H. G., & Kee, C. S. (2015). Effects of Optically Imposed Astigmatism on Early Eye Growth in Chicks. PLOS ONE, 10(2), e0117729. doi:10.1371/journal.pone.0117729 | es_ES |
dc.description.references | Monsoriu, J. A., Saavedra, G., & Furlan, W. D. (2004). Fractal zone plates with variable lacunarity. Optics Express, 12(18), 4227. doi:10.1364/opex.12.004227 | es_ES |
dc.description.references | Rodríguez-Vallejo, M., Montagud, D., Monsoriu, J. A., & Furlan, W. D. (2017). On the power profiles of contact lenses measured with NIMO TR1504. Journal of Optometry, 10(4), 265-266. doi:10.1016/j.optom.2016.10.002 | es_ES |
dc.description.references | Plainis, S., Atchison, D. A., & Charman, W. N. (2013). Power Profiles of Multifocal Contact Lenses and Their Interpretation. Optometry and Vision Science, 90(10), 1066-1077. doi:10.1097/opx.0000000000000030 | es_ES |
dc.description.references | Calossi, A. (2007). Corneal Asphericity and Spherical Aberration. Journal of Refractive Surgery, 23(5), 505-514. doi:10.3928/1081-597x-20070501-15 | es_ES |
dc.description.references | Lopes-Ferreira, D. P., Neves, H. I. F., Faria-Ribeiro, M., Queirós, A., Fernandes, P. R. B., & González-Méijome, J. M. (2015). Peripheral refraction with eye and head rotation with contact lenses. Contact Lens and Anterior Eye, 38(2), 104-109. doi:10.1016/j.clae.2014.11.201 | es_ES |
dc.description.references | THIBOS, L. N., WHEELER, W., & HORNER, D. (1997). Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error. Optometry and Vision Science, 74(6), 367-375. doi:10.1097/00006324-199706000-00019 | es_ES |
dc.description.references | Ehsaei, A., Mallen, E. A. H., Chisholm, C. M., & Pacey, I. E. (2011). Cross-sectional Sample of Peripheral Refraction in Four Meridians in Myopes and Emmetropes. Investigative Opthalmology & Visual Science, 52(10), 7574. doi:10.1167/iovs.11-7635 | es_ES |
dc.description.references | Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2017). Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic and Physiological Optics, 37(2), 151-159. doi:10.1111/opo.12354 | es_ES |
dc.description.references | Verkicharla, P. K., Suheimat, M., Schmid, K. L., & Atchison, D. A. (2016). Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia. Optometry and Vision Science, 93(9), 1072-1078. doi:10.1097/opx.0000000000000905 | es_ES |
dc.description.references | Atchison, D. A. (2006). Optical models for human myopic eyes. Vision Research, 46(14), 2236-2250. doi:10.1016/j.visres.2006.01.004 | es_ES |
dc.description.references | He, J. C. (2014). Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations. Ophthalmic and Physiological Optics, 34(3), 321-330. doi:10.1111/opo.12127 | es_ES |
dc.description.references | Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2016). Mirror Symmetry of Peripheral Monochromatic Aberrations in Fellow Eyes of Isomyopes and Anisomyopes. Investigative Opthalmology & Visual Science, 57(7), 3422. doi:10.1167/iovs.16-19267 | es_ES |
dc.description.references | Shen, G., Qi, Q., & Ma, X. (2016). Effect of Moisture Chamber Spectacles on Tear Functions in Dry Eye Disease. Optometry and Vision Science, 93(2), 158-164. doi:10.1097/opx.0000000000000778 | es_ES |