- -

Relative Peripheral Myopia Induced by Fractal Contact Lenses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relative Peripheral Myopia Induced by Fractal Contact Lenses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-Vallejo, Manuel es_ES
dc.contributor.author Montagud-Martínez, Diego es_ES
dc.contributor.author Monsoriu Serra, Juan Antonio es_ES
dc.contributor.author Ferrando Martín, Vicente es_ES
dc.contributor.author Furlan, Walter D. es_ES
dc.date.accessioned 2019-05-22T20:27:39Z
dc.date.available 2019-05-22T20:27:39Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0271-3683 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120913
dc.description.abstract [EN] Purpose: To assess the peripheral refraction induced by Fractal Contact Lenses (FCLs) in myopic eyes by means of a two-dimensional Relative Peripheral Refractive Error (RPRE) map. Materials and Methods: This study involved 26 myopic subjects ranging from -0.50 D to -7.00 D. FCLs prototypes were custom-manufactured and characterized. Corneal topographies were taken in order to assess correlations between corneal asphericity and lens decentration. Two-dimensional RPREs were measured with an open-field autorefractor at 67 points, covering the central 60 x 30 degrees of the visual field. The bidimensional RPRE vector components: M, J(0) and J(45) of the difference between the values obtained with and without the FCLs in the eye were obtained. Additionally, the FCL-induced peripheral refraction in tangential and sagittal planes was computed along the horizontal meridian. Results: Induced by the FCLs, significant differences for all vector components were found in the peripheral retina. FCLs were decentered a mean of 0.7 +/- 0.19 mm to the temporal cornea. The two-dimensional RPRE maps manifested the FCLs decentration. In particular, M varied asymmetrically between nasal and temporal retina after fitting the FCLs with a significant increment of the myopic shift beyond 10o (p < 0.05). No correlations were found between the amount of lens decentration and the asphericity of the cornea along temporal and nasal sides. However, significant correlations were found between the corneal asphericity and vector components of the RPRE in naked eyes. FCLs produced an increasing myopic shift in tangential and sagittal power errors along the horizontal meridian. Conclusions: As predicted by ray-tracing simulations, FCLs fitted in myopic eyes produce a myopic shift of the RPRE. The two-dimensional RPRE maps show information about the lens performance that is hidden in the conventional one-dimensional meridional representations. es_ES
dc.description.sponsorship This work was founded by Ministerio de Economía y Competitividad FEDER (Grant DPI2015-71256-R), and by Generalitat Valenciana (Grant PROMETEOII-2014-072), Spain.
dc.language Inglés es_ES
dc.publisher Informa UK (Informa Healthcare) es_ES
dc.relation.ispartof Current Eye Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Myopia progression es_ES
dc.subject Contact lenses es_ES
dc.subject Fractal es_ES
dc.subject Peripheral refractive error es_ES
dc.subject Two-dimensional maps es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Relative Peripheral Myopia Induced by Fractal Contact Lenses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02713683.2018.1507043 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F072/ES/Grupo de fibras ópticas y procesado de señal/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-71256-R/ES/DISEÑO Y OPTIMIZACION DE LENTES INTRACORNEALES DIFRACTIVAS MULTIFOCALES PARA EL TRATAMIENTO DE LA PRESBICIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Rodríguez-Vallejo, M.; Montagud-Martínez, D.; Monsoriu Serra, JA.; Ferrando Martín, V.; Furlan, WD. (2018). Relative Peripheral Myopia Induced by Fractal Contact Lenses. Current Eye Research. 43(12):1514-1521. https://doi.org/10.1080/02713683.2018.1507043 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/ 10.1080/02713683.2018.1507043 es_ES
dc.description.upvformatpinicio 1514 es_ES
dc.description.upvformatpfin 1521 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 30089428
dc.relation.pasarela S\368740 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Wolffsohn, J. S., Calossi, A., Cho, P., Gifford, K., Jones, L., Li, M., … Zvirgzdina, M. (2016). Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens and Anterior Eye, 39(2), 106-116. doi:10.1016/j.clae.2016.02.005 es_ES
dc.description.references Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., … Qu, J. (2016). Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology, 123(4), 697-708. doi:10.1016/j.ophtha.2015.11.010 es_ES
dc.description.references Walline, J. J. (2016). Myopia Control. Eye & Contact Lens: Science & Clinical Practice, 42(1), 3-8. doi:10.1097/icl.0000000000000207 es_ES
dc.description.references González-Méijome, J. M., Faria-Ribeiro, M. A., Lopes-Ferreira, D. P., Fernandes, P., Carracedo, G., & Queiros, A. (2015). Changes in Peripheral Refractive Profile after Orthokeratology for Different Degrees of Myopia. Current Eye Research, 41(2), 199-207. doi:10.3109/02713683.2015.1009634 es_ES
dc.description.references Sankaridurg, P. (2017). Contact lenses to slow progression of myopia. Clinical and Experimental Optometry, 100(5), 432-437. doi:10.1111/cxo.12584 es_ES
dc.description.references Hiraoka, T., Kotsuka, J., Kakita, T., Okamoto, F., & Oshika, T. (2017). Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Scientific Reports, 7(1). doi:10.1038/s41598-017-08177-6 es_ES
dc.description.references Atchison, D. A., & Rosén, R. (2016). The Possible Role of Peripheral Refraction in Development of Myopia. Optometry and Vision Science, 93(9), 1042-1044. doi:10.1097/opx.0000000000000979 es_ES
dc.description.references Troilo, D. (2016). The Case for Lens Treatments in the Control of Myopia Progression. Optometry and Vision Science, 93(9), 1045-1048. doi:10.1097/opx.0000000000000916 es_ES
dc.description.references Turnbull, P. R. K., Munro, O. J., & Phillips, J. R. (2016). Contact Lens Methods for Clinical Myopia Control. Optometry and Vision Science, 93(9), 1120-1126. doi:10.1097/opx.0000000000000957 es_ES
dc.description.references Rodriguez-Vallejo, M., Benlloch, J., Pons, A., Monsoriu, J. A., & Furlan, W. D. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research, 39(12), 1151-1160. doi:10.3109/02713683.2014.903498 es_ES
dc.description.references Charman, W. N. (2011). Keeping the World in Focus: How Might This Be Achieved? Optometry and Vision Science, 88(3), 373-376. doi:10.1097/opx.0b013e31820b052b es_ES
dc.description.references Kee, C.-S., Hung, L.-F., Qiao-Grider, Y., Roorda, A., & Smith, E. L. (2004). Effects of Optically Imposed Astigmatism on Emmetropization in Infant Monkeys. Investigative Opthalmology & Visual Science, 45(6), 1647. doi:10.1167/iovs.03-0841 es_ES
dc.description.references Chu, C. H. G., & Kee, C. S. (2015). Effects of Optically Imposed Astigmatism on Early Eye Growth in Chicks. PLOS ONE, 10(2), e0117729. doi:10.1371/journal.pone.0117729 es_ES
dc.description.references Monsoriu, J. A., Saavedra, G., & Furlan, W. D. (2004). Fractal zone plates with variable lacunarity. Optics Express, 12(18), 4227. doi:10.1364/opex.12.004227 es_ES
dc.description.references Rodríguez-Vallejo, M., Montagud, D., Monsoriu, J. A., & Furlan, W. D. (2017). On the power profiles of contact lenses measured with NIMO TR1504. Journal of Optometry, 10(4), 265-266. doi:10.1016/j.optom.2016.10.002 es_ES
dc.description.references Plainis, S., Atchison, D. A., & Charman, W. N. (2013). Power Profiles of Multifocal Contact Lenses and Their Interpretation. Optometry and Vision Science, 90(10), 1066-1077. doi:10.1097/opx.0000000000000030 es_ES
dc.description.references Calossi, A. (2007). Corneal Asphericity and Spherical Aberration. Journal of Refractive Surgery, 23(5), 505-514. doi:10.3928/1081-597x-20070501-15 es_ES
dc.description.references Lopes-Ferreira, D. P., Neves, H. I. F., Faria-Ribeiro, M., Queirós, A., Fernandes, P. R. B., & González-Méijome, J. M. (2015). Peripheral refraction with eye and head rotation with contact lenses. Contact Lens and Anterior Eye, 38(2), 104-109. doi:10.1016/j.clae.2014.11.201 es_ES
dc.description.references THIBOS, L. N., WHEELER, W., & HORNER, D. (1997). Power Vectors: An Application of Fourier Analysis to the Description and Statistical Analysis of Refractive Error. Optometry and Vision Science, 74(6), 367-375. doi:10.1097/00006324-199706000-00019 es_ES
dc.description.references Ehsaei, A., Mallen, E. A. H., Chisholm, C. M., & Pacey, I. E. (2011). Cross-sectional Sample of Peripheral Refraction in Four Meridians in Myopes and Emmetropes. Investigative Opthalmology & Visual Science, 52(10), 7574. doi:10.1167/iovs.11-7635 es_ES
dc.description.references Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2017). Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic and Physiological Optics, 37(2), 151-159. doi:10.1111/opo.12354 es_ES
dc.description.references Verkicharla, P. K., Suheimat, M., Schmid, K. L., & Atchison, D. A. (2016). Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia. Optometry and Vision Science, 93(9), 1072-1078. doi:10.1097/opx.0000000000000905 es_ES
dc.description.references Atchison, D. A. (2006). Optical models for human myopic eyes. Vision Research, 46(14), 2236-2250. doi:10.1016/j.visres.2006.01.004 es_ES
dc.description.references He, J. C. (2014). Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations. Ophthalmic and Physiological Optics, 34(3), 321-330. doi:10.1111/opo.12127 es_ES
dc.description.references Osuagwu, U. L., Suheimat, M., & Atchison, D. A. (2016). Mirror Symmetry of Peripheral Monochromatic Aberrations in Fellow Eyes of Isomyopes and Anisomyopes. Investigative Opthalmology & Visual Science, 57(7), 3422. doi:10.1167/iovs.16-19267 es_ES
dc.description.references Shen, G., Qi, Q., & Ma, X. (2016). Effect of Moisture Chamber Spectacles on Tear Functions in Dry Eye Disease. Optometry and Vision Science, 93(2), 158-164. doi:10.1097/opx.0000000000000778 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem