- -

Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Behl, Ramandeep es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Motsa, Sandile S. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2019-05-22T20:28:22Z
dc.date.available 2019-05-22T20:28:22Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0924-090X es_ES
dc.identifier.uri http://hdl.handle.net/10251/120925
dc.description.abstract [EN] There is a few number of optimal fourth-order iterative methods for obtaining the multiple roots of nonlinear equations. But, in most of the earlier studies, scholars gave the flexibility in their proposed schemes only at the second step (not at the first step) in order to explore new schemes. Unlike what happens in existing methods, the main aim of this manuscript is to construct a new fourth-order optimal scheme which will give the flexibility to the researchers at both steps as well as faster convergence, smaller residual errors and asymptotic error constants. The construction of the proposed scheme is based on the mid-point formula and weight function approach. From the computational point of view, the stability of the resulting class of iterative methods is studied by means of the conjugacy maps and the analysis of strange fixed points. Their basins of attractions and parameter planes are also given to show their dynamical behavior around the multiple roots. Finally, we consider a real-life problem and a concrete variety of standard test functions for numerical experiments and relevant results are extensively treated to confirm the theoretical development. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Nonlinear Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Multiple roots es_ES
dc.subject Complex dynamics es_ES
dc.subject Dynamical and parameter plane es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11071-017-3858-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Behl, R.; Cordero Barbero, A.; Motsa, SS.; Torregrosa Sánchez, JR. (2018). Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics. 91(1):81-112. https://doi.org/10.1007/s11071-017-3858-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11071-017-3858-6 es_ES
dc.description.upvformatpinicio 81 es_ES
dc.description.upvformatpfin 112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\357144 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 71(4), 775–796 (2016) es_ES
dc.description.references Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984) es_ES
dc.description.references Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013(2013), 1–11 (2013) es_ES
dc.description.references Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999) es_ES
dc.description.references Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987) es_ES
dc.description.references Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015) es_ES
dc.description.references Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974) es_ES
dc.description.references Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) es_ES
dc.description.references Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009) es_ES
dc.description.references Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013) es_ES
dc.description.references Sbibih, D., Serghini, A., Tijini, A., Zidna, A.: A general family of third order method for finding multiple roots. AMC 233, 338–350 (2014) es_ES
dc.description.references Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Ann. 2, 317–365 (1870) es_ES
dc.description.references Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013) es_ES
dc.description.references Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013) es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem