- -

Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations

Mostrar el registro completo del ítem

Behl, R.; Cordero Barbero, A.; Motsa, SS.; Torregrosa Sánchez, JR. (2018). Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics. 91(1):81-112. https://doi.org/10.1007/s11071-017-3858-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120925

Ficheros en el ítem

Metadatos del ítem

Título: Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations
Autor: Behl, Ramandeep Cordero Barbero, Alicia Motsa, Sandile S. Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] There is a few number of optimal fourth-order iterative methods for obtaining the multiple roots of nonlinear equations. But, in most of the earlier studies, scholars gave the flexibility in their proposed schemes ...[+]
Palabras clave: Nonlinear equations , Multiple roots , Complex dynamics , Dynamical and parameter plane , Stability
Derechos de uso: Reserva de todos los derechos
Fuente:
Nonlinear Dynamics. (issn: 0924-090X )
DOI: 10.1007/s11071-017-3858-6
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11071-017-3858-6
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.
Tipo: Artículo

References

Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 71(4), 775–796 (2016)

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013(2013), 1–11 (2013) [+]
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 71(4), 775–796 (2016)

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013(2013), 1–11 (2013)

Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)

Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987)

Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)

Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)

Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)

Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013)

Sbibih, D., Serghini, A., Tijini, A., Zidna, A.: A general family of third order method for finding multiple roots. AMC 233, 338–350 (2014)

Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Ann. 2, 317–365 (1870)

Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)

Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)

Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013)

Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)

Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem