Hervás-Marín, D.; Prats-Montalbán, JM.; Lahoz Rodríguez, AG.; Ferrer, A. (2018). Sparse N-way partial least squares with R package sNPLS. Chemometrics and Intelligent Laboratory Systems. 179:54-63. https://doi.org/10.1016/j.chemolab.2018.06.005
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121007
Title:
|
Sparse N-way partial least squares with R package sNPLS
|
Author:
|
Hervás-Marín, David
Prats-Montalbán, José Manuel
Lahoz Rodríguez, Agustín Gerardo
Ferrer, Alberto
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Química - Departament de Química
|
Issued date:
|
|
Abstract:
|
[EN] We introduce the R package sNPLS that performs N-way partial least squares (N-PLS) regression and Sparse (L1-penalized) N-PLS regression in three-way arrays. N-PLS regression is superior to other methods for three-way ...[+]
[EN] We introduce the R package sNPLS that performs N-way partial least squares (N-PLS) regression and Sparse (L1-penalized) N-PLS regression in three-way arrays. N-PLS regression is superior to other methods for three-way data based in unfolding, thanks to a better stabilization of the decomposition. This provides better interpretability and improves predictions. The sparse version also adds variable selection through L1 penalization. The sparse version of N-PLS is able to provide lower prediction errors and to further improve interpretability and usability of the N-PLS results. After a short introduction to both methods, the different functions of the package are presented by displaying their use in simulated and a real dataset.
[-]
|
Subjects:
|
N-PLS
,
LASSO
,
Sparse matrices
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
Chemometrics and Intelligent Laboratory Systems. (issn:
0169-7439
)
|
DOI:
|
10.1016/j.chemolab.2018.06.005
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://doi.org/10.1016/j.chemolab.2018.06.005
|
Project ID:
|
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F093/ES/The Next Systems Biology: desarrollo de métodos estadísticos para la biología de sistemas multiómica/
|
Thanks:
|
Research in this study was partially supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana under the project PROMETEO/2016/093.
|
Type:
|
Artículo
|