Mostrar el registro sencillo del ítem
dc.contributor.author | Hervás-Marín, David | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Lahoz Rodríguez, Agustín Gerardo | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2019-05-23T20:03:28Z | |
dc.date.available | 2019-05-23T20:03:28Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0169-7439 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121007 | |
dc.description.abstract | [EN] We introduce the R package sNPLS that performs N-way partial least squares (N-PLS) regression and Sparse (L1-penalized) N-PLS regression in three-way arrays. N-PLS regression is superior to other methods for three-way data based in unfolding, thanks to a better stabilization of the decomposition. This provides better interpretability and improves predictions. The sparse version also adds variable selection through L1 penalization. The sparse version of N-PLS is able to provide lower prediction errors and to further improve interpretability and usability of the N-PLS results. After a short introduction to both methods, the different functions of the package are presented by displaying their use in simulated and a real dataset. | es_ES |
dc.description.sponsorship | Research in this study was partially supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana under the project PROMETEO/2016/093. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | N-PLS | es_ES |
dc.subject | LASSO | es_ES |
dc.subject | Sparse matrices | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Sparse N-way partial least squares with R package sNPLS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2018.06.005 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F093/ES/The Next Systems Biology: desarrollo de métodos estadísticos para la biología de sistemas multiómica/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Hervás-Marín, D.; Prats-Montalbán, JM.; Lahoz Rodríguez, AG.; Ferrer, A. (2018). Sparse N-way partial least squares with R package sNPLS. Chemometrics and Intelligent Laboratory Systems. 179:54-63. https://doi.org/10.1016/j.chemolab.2018.06.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.chemolab.2018.06.005 | es_ES |
dc.description.upvformatpinicio | 54 | es_ES |
dc.description.upvformatpfin | 63 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 179 | es_ES |
dc.relation.pasarela | S\367379 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |