- -

Analysis of an efficient parallel implementation of active-set Newton algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of an efficient parallel implementation of active-set Newton algorithm

Mostrar el registro completo del ítem

San Juan-Sebastian, P.; Virtanen, T.; García Mollá, VM.; Vidal Maciá, AM. (2018). Analysis of an efficient parallel implementation of active-set Newton algorithm. The Journal of Supercomputing. 75(3):1298-1309. https://doi.org/10.1007/s11227-018-2423-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121116

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of an efficient parallel implementation of active-set Newton algorithm
Autor: San Juan-Sebastian, Pablo Virtanen, T. García Mollá, Víctor Manuel Vidal Maciá, Antonio Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] This paper presents an analysis of an efficient parallel implementation of the active-set Newton algorithm (ASNA), which is used to estimate the nonnegative weights of linear combinations of the atoms in a large-scale ...[+]
Palabras clave: Newton algorithm , Convex optimization , Sparse representation , Multicore Parallel computing
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-018-2423-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11227-018-2423-5
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU13%2F03828/ES/FPU13%2F03828/
info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/
Agradecimientos:
This work has been partially supported by Programa de FPU del MECD, by MINECO and FEDER from Spain, under the projects TEC2015-67387- C4-1-R, and by project PROMETEO FASE II 2014/003 of Generalitat Valenciana. The authors ...[+]
Tipo: Artículo

References

Raj B, Smaragdis P (2005) Latent variable decomposition of spectrograms for single channel speaker separation. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005), New Paltz, Ny

Bertin N, Badeau R, Vincent E (2010) Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans Audio Speech Lang Process 18(3):538–549

Dikmen O, Mesaros A (2013) Sound event detection using non-negative dictionaries learned from annotated overlapping events. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2013). New Paltz, NY [+]
Raj B, Smaragdis P (2005) Latent variable decomposition of spectrograms for single channel speaker separation. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005), New Paltz, Ny

Bertin N, Badeau R, Vincent E (2010) Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans Audio Speech Lang Process 18(3):538–549

Dikmen O, Mesaros A (2013) Sound event detection using non-negative dictionaries learned from annotated overlapping events. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2013). New Paltz, NY

Lawson CL, Hanson RJ (1995) Solving least squares problems. Society for Industrial and Applied Mathematics, Philadelphia

Virtanen T (2007) Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans Audio Speech Lang Process 15(3):1066–1074

Virtanen T, Gemmeke J, Raj B (2013) Active-set Newton algorithm for overcomplete non-negative representations of audio. IEEE Trans Audio Speech Lang Process 21(11):2277–2289

Cemgil AT (2009) Bayesian inference for nonnegative matrix factorisation models. Comput Intell Neurosci 2009:785152

Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations. Wiley, New York

MATLAB (2014) The Mathworks Inc., MATLAB R2014B, Natnick MA

Tuomas Virtanen, Original MATLAB implementation of ASNA algorithm. http://www.cs.tut.fi/~tuomasv/software.html

Carabias-Orti J, Rodriguez-Serrano F, Vera-Candeas P, Canadas-Quesada F, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription. Eng Appl Artif Intell 26:1671–1680

San Juan P, Virtanen T, Garcia-Molla Victor M, Vidal Antonio M (2016) Efficient parallel implementation of active-set newton algorithm for non-negative sparse representations. In: 16th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2016), Rota, Spain

Juan P San, Efficient implementations of ASNA algorithm. https://gitlab.com/P.SanJuan/ASNA

OpenMP v4.5 specification (2015). http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdf

Gemmeke JF, Hurmalainen A, Virtanen T, Sun Y (2011) Toward a practical implementation of exemplar-based noise robust ASR. In: Signal Processing Conference, 19th European, IEEE, pp 1490–1494

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem