Mostrar el registro sencillo del ítem
dc.contributor.author | San Juan-Sebastian, Pablo | es_ES |
dc.contributor.author | Virtanen, T. | es_ES |
dc.contributor.author | García Mollá, Víctor Manuel | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.date.accessioned | 2019-05-26T20:03:20Z | |
dc.date.available | 2019-05-26T20:03:20Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121116 | |
dc.description.abstract | [EN] This paper presents an analysis of an efficient parallel implementation of the active-set Newton algorithm (ASNA), which is used to estimate the nonnegative weights of linear combinations of the atoms in a large-scale dictionary to approximate an observation vector by minimizing the Kullback¿Leibler divergence between the observation vector and the approximation. The performance of ASNA has been proved in previous works against other state-of-the-art methods. The implementations analysed in this paper have been developed in C, using parallel programming techniques to obtain a better performance in multicore architectures than the original MATLAB implementation. Also a hardware analysis is performed to check the influence of CPU frequency and number of CPU cores in the different implementations proposed. The new implementations allow ASNA algorithm to tackle real-time problems due to the execution time reduction obtained. | es_ES |
dc.description.sponsorship | This work has been partially supported by Programa de FPU del MECD, by MINECO and FEDER from Spain, under the projects TEC2015-67387- C4-1-R, and by project PROMETEO FASE II 2014/003 of Generalitat Valenciana. The authors want to thank Dr. Konstantinos Drossos for some very useful mind changing discussions. This work has been conducted in Laboratory of Signal Processing, Tampere University of Technology. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Newton algorithm | es_ES |
dc.subject | Convex optimization | es_ES |
dc.subject | Sparse representation | es_ES |
dc.subject | Multicore Parallel computing | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Analysis of an efficient parallel implementation of active-set Newton algorithm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-018-2423-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F03828/ES/FPU13%2F03828/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | San Juan-Sebastian, P.; Virtanen, T.; García Mollá, VM.; Vidal Maciá, AM. (2018). Analysis of an efficient parallel implementation of active-set Newton algorithm. The Journal of Supercomputing. 75(3):1298-1309. https://doi.org/10.1007/s11227-018-2423-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11227-018-2423-5 | es_ES |
dc.description.upvformatpinicio | 1298 | es_ES |
dc.description.upvformatpfin | 1309 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\369008 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Raj B, Smaragdis P (2005) Latent variable decomposition of spectrograms for single channel speaker separation. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005), New Paltz, Ny | es_ES |
dc.description.references | Bertin N, Badeau R, Vincent E (2010) Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans Audio Speech Lang Process 18(3):538–549 | es_ES |
dc.description.references | Dikmen O, Mesaros A (2013) Sound event detection using non-negative dictionaries learned from annotated overlapping events. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2013). New Paltz, NY | es_ES |
dc.description.references | Lawson CL, Hanson RJ (1995) Solving least squares problems. Society for Industrial and Applied Mathematics, Philadelphia | es_ES |
dc.description.references | Virtanen T (2007) Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans Audio Speech Lang Process 15(3):1066–1074 | es_ES |
dc.description.references | Virtanen T, Gemmeke J, Raj B (2013) Active-set Newton algorithm for overcomplete non-negative representations of audio. IEEE Trans Audio Speech Lang Process 21(11):2277–2289 | es_ES |
dc.description.references | Cemgil AT (2009) Bayesian inference for nonnegative matrix factorisation models. Comput Intell Neurosci 2009:785152 | es_ES |
dc.description.references | Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations. Wiley, New York | es_ES |
dc.description.references | MATLAB (2014) The Mathworks Inc., MATLAB R2014B, Natnick MA | es_ES |
dc.description.references | Tuomas Virtanen, Original MATLAB implementation of ASNA algorithm. http://www.cs.tut.fi/~tuomasv/software.html | es_ES |
dc.description.references | Carabias-Orti J, Rodriguez-Serrano F, Vera-Candeas P, Canadas-Quesada F, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription. Eng Appl Artif Intell 26:1671–1680 | es_ES |
dc.description.references | San Juan P, Virtanen T, Garcia-Molla Victor M, Vidal Antonio M (2016) Efficient parallel implementation of active-set newton algorithm for non-negative sparse representations. In: 16th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2016), Rota, Spain | es_ES |
dc.description.references | Juan P San, Efficient implementations of ASNA algorithm. https://gitlab.com/P.SanJuan/ASNA | es_ES |
dc.description.references | OpenMP v4.5 specification (2015). http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdf | es_ES |
dc.description.references | Gemmeke JF, Hurmalainen A, Virtanen T, Sun Y (2011) Toward a practical implementation of exemplar-based noise robust ASR. In: Signal Processing Conference, 19th European, IEEE, pp 1490–1494 | es_ES |