- -

A Better-response Strategy for Self-interested Planning Agents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Better-response Strategy for Self-interested Planning Agents

Mostrar el registro completo del ítem

Jordán, J.; Torreño Lerma, A.; De Weerdt, M.; Onaindia De La Rivaherrera, E. (2018). A Better-response Strategy for Self-interested Planning Agents. Applied Intelligence. 48(4):1020-1040. https://doi.org/10.1007/s10489-017-1046-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121362

Ficheros en el ítem

Metadatos del ítem

Título: A Better-response Strategy for Self-interested Planning Agents
Autor: Jordán, Jaume Torreño Lerma, Alejandro de Weerdt, M. Onaindia De La Rivaherrera, Eva
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] When self-interested agents plan individually, interactions that prevent them from executing their actions as planned may arise. In these coordination problems, game-theoretic planning can be used to enhance the agents¿ ...[+]
Palabras clave: Planning , Game theory , Best-response , Better-response , Nash equilibrium
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Intelligence. (issn: 0924-669X )
DOI: 10.1007/s10489-017-1046-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s10489-017-1046-5
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2011-27652-C03-01/ES/INTERACCION MULTIAGENTE PARA PLANIFICACION/
info:eu-repo/grantAgreement/MINECO//TIN2014-55637-C2-2-R/ES/GESTION DE METAS PARA AUTONOMIA A LARGO PLAZO EN CIUDADES INTELIGENTES/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/
Agradecimientos:
This work is supported by the GLASS project TIN2014-55637-C2-2-R of the Spanish MINECO and the Prometeo project II/2013/019 funded by the Valencian Government.
Tipo: Artículo

References

Aghighi M, Bäckström C (2016) A multi-parameter complexity analysis of cost-optimal and net-benefit planning. In: Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, London, pp 2–10

Bercher P, Mattmüller R (2008) A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, vol 8, pp 921–922

Brafman RI, Domshlak C, Engel Y, Tennenholtz M (2009) Planning games. In: IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence, pp 73–78 [+]
Aghighi M, Bäckström C (2016) A multi-parameter complexity analysis of cost-optimal and net-benefit planning. In: Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, London, pp 2–10

Bercher P, Mattmüller R (2008) A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, vol 8, pp 921–922

Brafman RI, Domshlak C, Engel Y, Tennenholtz M (2009) Planning games. In: IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence, pp 73–78

Bylander T (1994) The computational complexity of propositional strips planning. Artif Intell 69(1):165–204

Chen X, Deng X (2006) Settling the complexity of two-player nash equilibrium. In: 47th annual IEEE symposium on foundations of computer science, 2006. FOCS’06. IEEE, pp 261–272

Chien S, Sinclair A (2011) Convergence to approximate nash equilibria in congestion games. Games and Economic Behavior 71(2):315–327

de Cote EM, Chapman A, Sykulski AM, Jennings N (2010) Automated planning in repeated adversarial games. In: 26th conference on uncertainty in artificial intelligence (UAI 2010), pp 376–383

Dunne PE, Kraus S, Manisterski E, Wooldridge M (2010) Solving coalitional resource games. Artif Intell 174(1):20–50

Fabrikant A, Papadimitriou C, Talwar K (2004) The complexity of pure nash equilibria. In: Proceedings of the thirty-sixth annual ACM symposium on theory of computing, STOC ’04, pp 604–612

Friedman JW, Mezzetti C (2001) Learning in games by random sampling. J Econ Theory 98(1):55–84

Ghallab M, Nau D, Traverso P (2004) Automated planning: theory & practice. Elsevier

Goemans M, Mirrokni V, Vetta A (2005) Sink equilibria and convergence. In: Proceedings of the 46th annual IEEE symposium on foundations of computer science, FOCS ’05, pp 142–154

Hadad M, Kraus S, Hartman IBA, Rosenfeld A (2013) Group planning with time constraints. Ann Math Artif Intell 69(3):243–291

Hart S, Mansour Y (2010) How long to equilibrium? the communication complexity of uncoupled equilibrium procedures. Games and Economic Behavior 69(1):107–126

Helmert M (2003) Complexity results for standard benchmark domains in planning. Artif Intell 143(2):219–262

Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246

Jennings N, Faratin P, Lomuscio A, Parsons S, Wooldrige M, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negot 10(2):199–215

Johnson DS, Papadimtriou CH, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37 (1):79–100

Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling, ICAPS

Jordán J, Onaindía E (2015) Game-theoretic approach for non-cooperative planning. In: 29th AAAI conference on artificial intelligence (AAAI-15), pp 1357–1363

McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL: the planning domain definition language. Yale Center for Computational Vision and Control, New Haven

Milchtaich I (1996) Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1):111–124

Monderer D, Shapley LS (1996) Potential games. Games and Economic Behavior 14(1):124–143

Nigro N, Welch D, Peace J (2015) Strategic planning to implement publicly available ev charching stations: a guide for business and policy makers. Tech rep, Center for Climate and Energy Solutions

Nisan N, Ronen A (2007) Computationally feasible vcg mechanisms. J Artif Intell Res 29(1):19–47

Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory. Cambridge University Press, New York

Papadimitriou CH (1994) On the complexity of the parity argument and other inefficient proofs of existence. J Comput Syst Sci 48(3):498–532

Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177

Rosenthal RW (1973) A class of games possessing pure-strategy nash equilibria. Int J Game Theory 2(1):65–67

Shoham Y, Leyton-Brown K (2009) Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University Press

Torreño A, Onaindia E, Sapena Ó (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178

Torreño A, Onaindia E, Sapena Ó (2014) FMAP: distributed cooperative multi-agent planning. Appl Intell 41(2):606– 626

Torreño A, Sapena Ó, Onaindia E (2015) Global heuristics for distributed cooperative multi-agent planning. In: ICAPS 2015. 25th international conference on automated planning and scheduling. AAAI Press, pp 225–233

Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University Press

de Weerdt M, Bos A, Tonino H, Witteveen C (2003) A resource logic for multi-agent plan merging. Ann Math Artif Intell 37(1):93–130

Wooldridge M, Endriss U, Kraus S, Lang J (2013) Incentive engineering for boolean games. Artif Intell 195:418–439

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem