- -

Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI

Mostrar el registro completo del ítem

Lario-Femenía, J.; Fombuena, V.; Segovia-López, F.; Amigó, V. (2018). Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI. Revista de Metalurgia. 54(4):e130-e138. https://doi.org/10.3989/revmetalm.130

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121768

Ficheros en el ítem

Metadatos del ítem

Título: Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI
Otro titulo: Influence of the nanotubular morphology on the wettability and contact angle of Ti6Al4V ELI alloy
Autor: Lario-Femenía, Joan Fombuena, Vicent Segovia-López, Francisco Amigó, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The implant Osseointegration rate depends, among other factors, on the surface's topography and chemical composition, as in the interactions between the implant surface and cells. In this work the surface free energy ...[+]


[ES] La tasa de osteointegración de los implantes, entre otros factores, depende de la topografía y de la composición química de la superficie, así como de las interacciones entre la superficie del implante y las células. ...[+]
Palabras clave: Ángulo de contacto , Biomateriales , Energía superficial , Mojabilidad , Nanotubos , TiO2
Derechos de uso: Reconocimiento (by)
Fuente:
Revista de Metalurgia. (issn: 0034-8570 )
DOI: 10.3989/revmetalm.130
Editorial:
Departmento de Publicaciones del CSIC
Versión del editor: https://doi.org/10.3989/revmetalm.130
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/
Agradecimientos:
Al Ministerio de Economía y Competitividad del Gobierno de España por la financiación recibida a través del proyecto de investigación MAT2014- 53764-C3-1-R. A la Generalitat Valenciana por el proyecto PROMETEO/2016/040. ...[+]
Tipo: Artículo

References

ASTM F136 (2013). Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, USA.

Bayram, C., Demirbilek, M., Yalçin, E., Bozkurt, M., Do?an, M., Denkba?, E.B. (2014). Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl. Surf. Sci. 288, 143-148.

Berger, S., Hahn, R., Roy, P., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. Phys. Status Solidi B 247, 2424–2435. [+]
ASTM F136 (2013). Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, USA.

Bayram, C., Demirbilek, M., Yalçin, E., Bozkurt, M., Do?an, M., Denkba?, E.B. (2014). Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl. Surf. Sci. 288, 143-148.

Berger, S., Hahn, R., Roy, P., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. Phys. Status Solidi B 247, 2424–2435.

Bharathidasan, T., Narayanan, T.N., Sathyanaryanan, S., Sreejakumari, S.S. (2015). Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon 84, 207–213.

Çalı?kan, N., Bayram, C., Erdal, E., Karahalilo?lu, Z., Baki, E. (2014a). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mat. Sci. Eng. C 35, 100–105.

Çali?kan, N., Bayram, C., Erdal, E., Karahalilo?lu, Z., Denkba?, E.B. (2014b). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mat. Sci. Eng. C 35 (1), 100–105.

Chen, J., Zhang, Z., Ouyang, J., Chen, X., Xu, Z., Sun, X. (2014). Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Appl. Surf. Sci. 305, 24–32.

Chennell, P., Feschet-Chassot, E., Devers, T., Awitor, K.O., Descamps, S., Sautou, V. (2013). In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int. J. Pharm. 455 (1-2), 298–305.

Das, K., Bose, S., Bandyopadhyay, A. (2008). TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res. A 90 (1), 225–237.

Davis, J.R. (1990). ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Vol. 2, ASM International.

Duraccio, D., Mussano, F., Faga, M.G. (2015). Biomaterials for dental implants: current and future trends. J. Mater. Sci. 50 (14), 4779–4812.

Elias, C.N., Oshida, Y., Cavalcanti, J.H., Muller, C.A. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater. 1 (3), 234–242.

Fais, L.M.G., Fernandes-Filho, R.B., Pereira-Da-Silva, M.A., Vaz, L.G., Adabo, G.L. (2012). Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J. Dent. 40 (4), 265–275.

Giacomello, A., Meloni, S., Chinappi, M., Casciola, C.M. (2012). Cassie-baxter and wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir 28 (29), 10764–10772.

Herrero-Climent, M., Lázaro, P., Vicente Rios, J., Lluch, S., Marqués, M., Guillem-Martí, J., Gil, F.J. (2013). Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies. J. Mater. Sci. -Mater. M. 24 (8), 2047–2055.

Jeong, Y.H., Kim, W.G., Choe, H.C., Brantley, W.A. (2014). Control of nanotube shape and morphology on Ti-Nb(Ta)-Zr alloys by varying anodizing potential. Thin Solid Films 572, 105–112.

Kim, E.S. Jeong, Y.H., Choe, H.C., Brantley, W.A. (2013). Formation of titanium dioxide nanotubes on Ti-30Nb-xTa alloys by anodizing. Thin Solid Films 549, 141–146.

Kubota, S., Johkura, K., Asanuma, K., Okouchi, Y., Ogiwara, N., Sasaki, K., Kasuga, T. (2004). Titanium oxide nanotubes for bone regeneration. J. Mater. Sci. Mater. Med. 15 (9), 1031–1035.

Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, A., Segovia-López, F., Amigó-Borrás, V. (2016a). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Rev. Metal. 52 (4), e084.

Lario, J., Vicente, A., Amigó, A., Segovia, F., Amigó, V. (2016b). Influencia del voltaje en la formación de nanotubos en aleaciones ?, ? + ? y ? de titanio. XXXIV Congreso Anual de la Sociedad Espa-ola de Ingeniería Biomédica, Valencia, pp. 164–167.

Lario, J., Amigó, A., Segovia, F., Amigó, V. (2017). Formación de nanotubos de TiO2 mediante anodizado electroquímico en las aleaciones de colada y pulvimetalúrgicas de titanio. VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia, Ciudad Real, Espa-a.

Lee, K., Jeong, Y.H., Brantley, W.A., Choe, H.C. (2013). Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method. Thin Solid Films 546, 185–188.

Macak, J.M., Taveira, L.V., Tsuchiya, H., Sirotna, K., Macak, J., Schmuki, P. (2006). Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram. 16 (1), 29–34.

Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid S. Mater. Sci. 11 (1-2), 3–18.

Minagar, S., Wang, J., Berndt, C.C., Ivanova, E.P., Wen, C. (2013). Cell response of anodized nanotubes on titanium and titanium alloys. J. Biomed. Mater. Res. A. 101 (9) 2726–2739.

Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 1 (1), 30–42.

Owens, D.K., Wendt, R.C. (1969). Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747. https://onlinelibrary.wiley.com/doi/pdf/10.1002/app. 1969.070130815.

Reclaru, L., Meyer, J.-M. (1998). Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 19 (1–3), 85–92.

Roguska, A., Pisarek, M., Belcarz, A., Marcon, L., Holdynski, M., Andrzejczuk, M., Janik-Czachor, M. (2016). Improvement of the bio-functional properties of TiO2 nanotubes. Appl. Surf. Sci. 388, 775–785.

Puckett, S.D., Taylor, E., Raimondo, T., Webster, T.J. (2010a). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31 (4), 706–713.

Puckett, S.D., Lee, P.P., Ciombor, D.M., Aaron, R.K., Webster, T.J. (2010b). Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta Biomater. 6 (6), 2352–2362.

Pypen, C.M.J.M., Plenk, H., Ebel, M.F., Svagera, R., Wernisch, J. (1997). Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. J. Mater. Sci. Mater. M. 8 (12), 781–784.

Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P.D., Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. J. Biomed. Mater. Res. A 101 (12), 3416–3430.

Szmukler-Moncler, S., Salama, H., Reingewirtz, Y., Dubruille, J.H. (1998). Timing of loading and effect of micromotion on bone– dental implant interface : Review of Experimental Literature. J. Biomed. Mater. Res. 43 (2), 192–203.

Toniollo, M.B., Galo, R., Macedo, A.P., Rodrigues, R.C.S., Ribeiro, R.F., Chiarello de Mattos, M. da G. (2012). Effect of fluoride sodium mouthwash solutions on cpTi: Evaluation of physicochemical properties. Braz. Dent. J. 23 (5), 496–501.

Toumelin-Chemla, F., Rouelle, F., Burdairon, G. (1996). Corrosive properties of fluoride-containing odontologic gels against titanium. J. Dent. 24 (1–2), 109–115.

Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J., Ivanova, E.P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31 (13), 3674–3683.

Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1997). Light-induced amphiphilic surfaces. Nature 388, 431–432.

Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1998). Photogeneration of Highly Amphiphilic TiO2 Surfaces. Adv. Mater. 10 (2), 135–138.

Zha, J., Ali, S.S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., Kharitonov, A.P., Monier, G., Darmanin, T., Guittard, F., Alekseiko, L.N. (2017). Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. J. Fluorine Chem. 200, 123–132.

Zhao, Y., Xiong, T., Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Appl. Surf. Sci. 256 (10), 3073–3076.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem