Mostrar el registro sencillo del ítem
dc.contributor.author | Lario-Femenía, Joan | es_ES |
dc.contributor.author | Fombuena, Vicent | es_ES |
dc.contributor.author | Segovia-López, Francisco | es_ES |
dc.contributor.author | Amigó, Vicente | es_ES |
dc.date.accessioned | 2019-06-07T20:05:09Z | |
dc.date.available | 2019-06-07T20:05:09Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0034-8570 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121768 | |
dc.description.abstract | [EN] The implant Osseointegration rate depends, among other factors, on the surface's topography and chemical composition, as in the interactions between the implant surface and cells. In this work the surface free energy for three surface treatments was calculated through contact angle measurements. For the anodic oxidized samples, a heat treatment was carried out to evaluate the influence of this process on the reduction of fluorine content. The aim of this work was study the influence of surface morphology and chemical composition on the alloy's wettability behavior. The contact angle measurement was analyzed by the sessile drop method. The nanotubes morphology was evaluated by Field Emission Scanning Electron Microscopy (FESEM). The surface composition was analyzed by Energy Dispersive Spectroscopy (EDS). The non-photoinduced nanotubes surface free energy was higher than the polished or acid etched samples. The heat treatment lowered the F/Ti ratio in the nanotube and decreased the contact angle, increasing the interaction with the surface. | es_ES |
dc.description.abstract | [ES] La tasa de osteointegración de los implantes, entre otros factores, depende de la topografía y de la composición química de la superficie, así como de las interacciones entre la superficie del implante y las células. Con el objetivo de evaluar esta interacción, el presente trabajo evalúa la energía superficial de tres acabados superficiales a partir de la medición del ángulo de contacto. En cuanto al acabado superficial de nanotubos se ha llevado a cabo un tratamiento térmico para evaluar la influencia de este proceso en la reducción del contenido de flúor. El objetivo de este estudio es evaluar la influencia de la morfología y composición de la superficie en la mojabilidad de la aleación. La medición del ángulo de contacto se realizó empleando un goniómetro óptico. La microscopía electrónica de barrido de emisión de campo (FESEM) ha permitido realizar un estudio del diámetro y espesor de los nanotubos. El análisis de espectrometría de dispersión de energía de rayos X (EDS) se empleó para analizar la composición superficial. Como resultados, destacar que la energía superficial de los nanotubos no fotoinducidos es superior a las superficies desbastadas o grabadas con ácido. Por lo tanto, el tratamiento térmico permite reducir la ratio F/Ti en los nanotubos, reduciendo así, el ángulo de contacto e incrementando la energía superficial de los nanotubos con lo que la interacción de superficies se mejora. | es_ES |
dc.description.sponsorship | Al Ministerio de Economía y Competitividad del Gobierno de España por la financiación recibida a través del proyecto de investigación MAT2014- 53764-C3-1-R. A la Generalitat Valenciana por el proyecto PROMETEO/2016/040. A la Comisión Europea por los fondos FEDER para la adquisición de equipamiento, y al servicio de Microscopía de la Universitat Politècnica de València, por su uso. | |
dc.language | Español | es_ES |
dc.publisher | Departmento de Publicaciones del CSIC | es_ES |
dc.relation.ispartof | Revista de Metalurgia | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ángulo de contacto | es_ES |
dc.subject | Biomateriales | es_ES |
dc.subject | Energía superficial | es_ES |
dc.subject | Mojabilidad | es_ES |
dc.subject | Nanotubos | es_ES |
dc.subject | TiO2 | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI | es_ES |
dc.title.alternative | Influence of the nanotubular morphology on the wettability and contact angle of Ti6Al4V ELI alloy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3989/revmetalm.130 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Lario-Femenía, J.; Fombuena, V.; Segovia-López, F.; Amigó, V. (2018). Influencia de la morfología nanotubular en la mojabilidad y ángulo de contacto de las aleaciones Ti6Al4V ELI. Revista de Metalurgia. 54(4):e130-e138. https://doi.org/10.3989/revmetalm.130 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3989/revmetalm.130 | es_ES |
dc.description.upvformatpinicio | e130 | es_ES |
dc.description.upvformatpfin | e138 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\371075 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | ASTM F136 (2013). Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, USA. | es_ES |
dc.description.references | Bayram, C., Demirbilek, M., Yalçin, E., Bozkurt, M., Do?an, M., Denkba?, E.B. (2014). Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl. Surf. Sci. 288, 143-148. | es_ES |
dc.description.references | Berger, S., Hahn, R., Roy, P., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. Phys. Status Solidi B 247, 2424–2435. | es_ES |
dc.description.references | Bharathidasan, T., Narayanan, T.N., Sathyanaryanan, S., Sreejakumari, S.S. (2015). Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon 84, 207–213. | es_ES |
dc.description.references | Çalı?kan, N., Bayram, C., Erdal, E., Karahalilo?lu, Z., Baki, E. (2014a). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mat. Sci. Eng. C 35, 100–105. | es_ES |
dc.description.references | Çali?kan, N., Bayram, C., Erdal, E., Karahalilo?lu, Z., Denkba?, E.B. (2014b). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mat. Sci. Eng. C 35 (1), 100–105. | es_ES |
dc.description.references | Chen, J., Zhang, Z., Ouyang, J., Chen, X., Xu, Z., Sun, X. (2014). Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Appl. Surf. Sci. 305, 24–32. | es_ES |
dc.description.references | Chennell, P., Feschet-Chassot, E., Devers, T., Awitor, K.O., Descamps, S., Sautou, V. (2013). In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int. J. Pharm. 455 (1-2), 298–305. | es_ES |
dc.description.references | Das, K., Bose, S., Bandyopadhyay, A. (2008). TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res. A 90 (1), 225–237. | es_ES |
dc.description.references | Davis, J.R. (1990). ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Vol. 2, ASM International. | es_ES |
dc.description.references | Duraccio, D., Mussano, F., Faga, M.G. (2015). Biomaterials for dental implants: current and future trends. J. Mater. Sci. 50 (14), 4779–4812. | es_ES |
dc.description.references | Elias, C.N., Oshida, Y., Cavalcanti, J.H., Muller, C.A. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater. 1 (3), 234–242. | es_ES |
dc.description.references | Fais, L.M.G., Fernandes-Filho, R.B., Pereira-Da-Silva, M.A., Vaz, L.G., Adabo, G.L. (2012). Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J. Dent. 40 (4), 265–275. | es_ES |
dc.description.references | Giacomello, A., Meloni, S., Chinappi, M., Casciola, C.M. (2012). Cassie-baxter and wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir 28 (29), 10764–10772. | es_ES |
dc.description.references | Herrero-Climent, M., Lázaro, P., Vicente Rios, J., Lluch, S., Marqués, M., Guillem-Martí, J., Gil, F.J. (2013). Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies. J. Mater. Sci. -Mater. M. 24 (8), 2047–2055. | es_ES |
dc.description.references | Jeong, Y.H., Kim, W.G., Choe, H.C., Brantley, W.A. (2014). Control of nanotube shape and morphology on Ti-Nb(Ta)-Zr alloys by varying anodizing potential. Thin Solid Films 572, 105–112. | es_ES |
dc.description.references | Kim, E.S. Jeong, Y.H., Choe, H.C., Brantley, W.A. (2013). Formation of titanium dioxide nanotubes on Ti-30Nb-xTa alloys by anodizing. Thin Solid Films 549, 141–146. | es_ES |
dc.description.references | Kubota, S., Johkura, K., Asanuma, K., Okouchi, Y., Ogiwara, N., Sasaki, K., Kasuga, T. (2004). Titanium oxide nanotubes for bone regeneration. J. Mater. Sci. Mater. Med. 15 (9), 1031–1035. | es_ES |
dc.description.references | Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, A., Segovia-López, F., Amigó-Borrás, V. (2016a). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Rev. Metal. 52 (4), e084. | es_ES |
dc.description.references | Lario, J., Vicente, A., Amigó, A., Segovia, F., Amigó, V. (2016b). Influencia del voltaje en la formación de nanotubos en aleaciones ?, ? + ? y ? de titanio. XXXIV Congreso Anual de la Sociedad Espa-ola de Ingeniería Biomédica, Valencia, pp. 164–167. | es_ES |
dc.description.references | Lario, J., Amigó, A., Segovia, F., Amigó, V. (2017). Formación de nanotubos de TiO2 mediante anodizado electroquímico en las aleaciones de colada y pulvimetalúrgicas de titanio. VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia, Ciudad Real, Espa-a. | es_ES |
dc.description.references | Lee, K., Jeong, Y.H., Brantley, W.A., Choe, H.C. (2013). Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method. Thin Solid Films 546, 185–188. | es_ES |
dc.description.references | Macak, J.M., Taveira, L.V., Tsuchiya, H., Sirotna, K., Macak, J., Schmuki, P. (2006). Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram. 16 (1), 29–34. | es_ES |
dc.description.references | Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid S. Mater. Sci. 11 (1-2), 3–18. | es_ES |
dc.description.references | Minagar, S., Wang, J., Berndt, C.C., Ivanova, E.P., Wen, C. (2013). Cell response of anodized nanotubes on titanium and titanium alloys. J. Biomed. Mater. Res. A. 101 (9) 2726–2739. | es_ES |
dc.description.references | Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 1 (1), 30–42. | es_ES |
dc.description.references | Owens, D.K., Wendt, R.C. (1969). Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747. https://onlinelibrary.wiley.com/doi/pdf/10.1002/app. 1969.070130815. | es_ES |
dc.description.references | Reclaru, L., Meyer, J.-M. (1998). Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 19 (1–3), 85–92. | es_ES |
dc.description.references | Roguska, A., Pisarek, M., Belcarz, A., Marcon, L., Holdynski, M., Andrzejczuk, M., Janik-Czachor, M. (2016). Improvement of the bio-functional properties of TiO2 nanotubes. Appl. Surf. Sci. 388, 775–785. | es_ES |
dc.description.references | Puckett, S.D., Taylor, E., Raimondo, T., Webster, T.J. (2010a). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31 (4), 706–713. | es_ES |
dc.description.references | Puckett, S.D., Lee, P.P., Ciombor, D.M., Aaron, R.K., Webster, T.J. (2010b). Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta Biomater. 6 (6), 2352–2362. | es_ES |
dc.description.references | Pypen, C.M.J.M., Plenk, H., Ebel, M.F., Svagera, R., Wernisch, J. (1997). Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. J. Mater. Sci. Mater. M. 8 (12), 781–784. | es_ES |
dc.description.references | Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P.D., Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. J. Biomed. Mater. Res. A 101 (12), 3416–3430. | es_ES |
dc.description.references | Szmukler-Moncler, S., Salama, H., Reingewirtz, Y., Dubruille, J.H. (1998). Timing of loading and effect of micromotion on bone– dental implant interface : Review of Experimental Literature. J. Biomed. Mater. Res. 43 (2), 192–203. | es_ES |
dc.description.references | Toniollo, M.B., Galo, R., Macedo, A.P., Rodrigues, R.C.S., Ribeiro, R.F., Chiarello de Mattos, M. da G. (2012). Effect of fluoride sodium mouthwash solutions on cpTi: Evaluation of physicochemical properties. Braz. Dent. J. 23 (5), 496–501. | es_ES |
dc.description.references | Toumelin-Chemla, F., Rouelle, F., Burdairon, G. (1996). Corrosive properties of fluoride-containing odontologic gels against titanium. J. Dent. 24 (1–2), 109–115. | es_ES |
dc.description.references | Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J., Ivanova, E.P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31 (13), 3674–3683. | es_ES |
dc.description.references | Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1997). Light-induced amphiphilic surfaces. Nature 388, 431–432. | es_ES |
dc.description.references | Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1998). Photogeneration of Highly Amphiphilic TiO2 Surfaces. Adv. Mater. 10 (2), 135–138. | es_ES |
dc.description.references | Zha, J., Ali, S.S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., Kharitonov, A.P., Monier, G., Darmanin, T., Guittard, F., Alekseiko, L.N. (2017). Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. J. Fluorine Chem. 200, 123–132. | es_ES |
dc.description.references | Zhao, Y., Xiong, T., Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Appl. Surf. Sci. 256 (10), 3073–3076. | es_ES |