- -

On the effect of the contact surface definition in the Cartesian grid finite element method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the effect of the contact surface definition in the Cartesian grid finite element method

Mostrar el registro completo del ítem

Navarro-Jiménez, J.; Tur Valiente, M.; Fuenmayor Fernández, F.; Ródenas, JJ. (2018). On the effect of the contact surface definition in the Cartesian grid finite element method. Advanced Modeling and Simulation in Engineering Sciences. 5(12):1-12. https://doi.org/10.1186/s40323-018-0108-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122233

Ficheros en el ítem

Metadatos del ítem

Título: On the effect of the contact surface definition in the Cartesian grid finite element method
Autor: Navarro-Jiménez, José-Manuel Tur Valiente, Manuel Fuenmayor Fernández, Francisco-Javier Ródenas, Juan José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The definition of the surface plays an important role in the solution of contact problems, as the evaluation of the contact force is based on the measure of the gap between the solids. In this work three different ...[+]
Palabras clave: Contact , Immersed boundary , CgFEM , NURBS
Derechos de uso: Reconocimiento (by)
Fuente:
Advanced Modeling and Simulation in Engineering Sciences. (eissn: 2213-7467 )
DOI: 10.1186/s40323-018-0108-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1186/s40323-018-0108-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
Agradecimientos:
The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politècnica de València for their financial support received through the projects DPI2017-89816-R, ...[+]
Tipo: Artículo

References

Düster a, Parvizian J, Yang Z, Rank E. The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng. 2008;197(45–48):3768–82. https://doi.org/10.1016/j.cma.2008.02.036 .

Schillinger D, Ruess M. The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng. 2015;22(3):391–455. https://doi.org/10.1007/s11831-014-9115-y .

Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472–501. https://doi.org/10.1002/nme.4823 . [+]
Düster a, Parvizian J, Yang Z, Rank E. The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng. 2008;197(45–48):3768–82. https://doi.org/10.1016/j.cma.2008.02.036 .

Schillinger D, Ruess M. The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng. 2015;22(3):391–455. https://doi.org/10.1007/s11831-014-9115-y .

Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472–501. https://doi.org/10.1002/nme.4823 .

Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ. Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal. 2013;2013:1–19. https://doi.org/10.1155/2013/953786 .

Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M. Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng. 2015;103(6):445–68. https://doi.org/10.1002/nme.4914 .

Tur M, Albelda J, Marco O, Ródenas JJ. Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng. 2015;296:352–75. https://doi.org/10.1016/j.cma.2015.08.001 .

Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ. A modified perturbed Lagrangian formulation for contact problems. Comput Mech. 2015;55(4):737–54. https://doi.org/10.1007/s00466-015-1133-6 .

Heintz P, Hansbo P. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng. 2006;195(33–36):4323–33. https://doi.org/10.1016/j.cma.2005.09.008 .

Annavarapu C, Hautefeuille M, Dolbow JE. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng. 2014;268:417–36. https://doi.org/10.1016/j.cma.2013.09.002 .

Poulios K, Renard Y. An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct. 2015;153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027 .

Mlika R, Renard Y, Chouly F. An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput Methods Appl Mech Eng. 2017;325:265–88. https://doi.org/10.1016/J.CMA.2017.07.015 .

Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng. 1992;33:1331–64. https://doi.org/10.1002/nme.1620330702 .

Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A. Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng. 2007;70:705–27. https://doi.org/10.1002/nme.1903 .

González-Estrada OA, Ródenas JJ, Bordas SPA, Nadal E, Kerfriden P, Fuenmayor FJ. Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Comput Struct. 2015;152:1–10. https://doi.org/10.1016/j.compstruc.2015.01.015 .

Wriggers P, Krstulovic-Opara L, Korelc J. Smooth c1-interpolations for two-dimensional frictional contact problems. Int J Numer Methods Eng. 2001;51(12):1469–95. https://doi.org/10.1002/nme.227 .

Padmanabhan V, Laursen TA. A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem Anal Design. 2001;37(3):173–98. https://doi.org/10.1016/S0168-874X(00)00029-9 .

Tur M, Giner E, Fuenmayor FJ, Wriggers P. 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng. 2012;247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002 .

Stadler M, Holzapfel GA, Korelc J. Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng. 2003;57(15):2177–203. https://doi.org/10.1002/nme.776 .

Puso MA, Laursen TA. A 3d contact smoothing method using gregory patches. Int J Numer Methods Eng. 2002;54(8):1161–94. https://doi.org/10.1002/nme.466 .

Neto DM, Oliveira MC, Menezes LF, Alves JL. A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng. 2016;299:283–315. https://doi.org/10.1016/j.cma.2015.11.011 .

Hughes TJR, Cottrell Ja, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194(39–41):4135–95. https://doi.org/10.1016/j.cma.2004.10.008 .

De Lorenzis L, Wriggers P, Hughes TJR. Isogeometric contact: a review. GAMM-Mitteilungen. 2014;37(1):85–123. https://doi.org/10.1002/gamm.201410005 .

Dittmann M, Franke M, Temizer I, Hesch C. Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng. 2014;274:192–212. https://doi.org/10.1016/j.cma.2014.02.012 .

Corbett CJ, Sauer RA. NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng. 2014;275:55–75. https://doi.org/10.1016/J.CMA.2014.02.019 .

Corbett CJ, Sauer RA. Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng. 2015;284:781–806. https://doi.org/10.1016/j.cma.2014.10.025 .

Navarro-Jiménez JM, Tur M, Albelda J, Ródenas JJ. Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics. 2018; 1–18. https://doi.org/10.1007/s00466-017-1533-x .

Lorensen WE, Cline HE, Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques—SIGGRAPH ’87, vol. 21. 1987. p. 163–169. New York: ACM Press. https://doi.org/10.1145/37401.37422 . http://portal.acm.org/citation.cfm?doid=37401.37422 .

Sevilla R, Fernández-Méndez S, Huerta A. NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng. 2008;76:56–83. https://doi.org/10.1002/nme.2311 .

Hüeber S, Mair M, Wohlmuth BI. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl Numer Math. 2005;54(3–4):555–76. https://doi.org/10.1016/J.APNUM.2004.09.019 .

Tur M, Fuenmayor FJ, Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng. 2009;198(37–40):2860–73. https://doi.org/10.1016/j.cma.2009.04.007 .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem