- -

On the effect of the contact surface definition in the Cartesian grid finite element method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the effect of the contact surface definition in the Cartesian grid finite element method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Jiménez, José-Manuel es_ES
dc.contributor.author Tur Valiente, Manuel es_ES
dc.contributor.author Fuenmayor Fernández, Francisco-Javier es_ES
dc.contributor.author Ródenas, Juan José es_ES
dc.date.accessioned 2019-06-14T20:42:30Z
dc.date.available 2019-06-14T20:42:30Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122233
dc.description.abstract [EN] The definition of the surface plays an important role in the solution of contact problems, as the evaluation of the contact force is based on the measure of the gap between the solids. In this work three different methods to define the surface are proposed for the solution of contact problems within the framework of the 3D Cartesian grid finite elementmethod. A stabilized formulation is used to solve the contact problem and details of the kinematic description for each surface definition are provided. The three methods are compared solving some numerical tests involving frictionless contact with finite and small deformations. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politècnica de València for their financial support received through the projects DPI2017-89816-R, Prometeo 2016/007 and the FPI2015 program.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Advanced Modeling and Simulation in Engineering Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Contact es_ES
dc.subject Immersed boundary es_ES
dc.subject CgFEM es_ES
dc.subject NURBS es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title On the effect of the contact surface definition in the Cartesian grid finite element method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40323-018-0108-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Navarro-Jiménez, J.; Tur Valiente, M.; Fuenmayor Fernández, F.; Ródenas, JJ. (2018). On the effect of the contact surface definition in the Cartesian grid finite element method. Advanced Modeling and Simulation in Engineering Sciences. 5(12):1-12. https://doi.org/10.1186/s40323-018-0108-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s40323-018-0108-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2213-7467 es_ES
dc.relation.pasarela S\366580 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Düster a, Parvizian J, Yang Z, Rank E. The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng. 2008;197(45–48):3768–82. https://doi.org/10.1016/j.cma.2008.02.036 . es_ES
dc.description.references Schillinger D, Ruess M. The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng. 2015;22(3):391–455. https://doi.org/10.1007/s11831-014-9115-y . es_ES
dc.description.references Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472–501. https://doi.org/10.1002/nme.4823 . es_ES
dc.description.references Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ. Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal. 2013;2013:1–19. https://doi.org/10.1155/2013/953786 . es_ES
dc.description.references Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M. Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng. 2015;103(6):445–68. https://doi.org/10.1002/nme.4914 . es_ES
dc.description.references Tur M, Albelda J, Marco O, Ródenas JJ. Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng. 2015;296:352–75. https://doi.org/10.1016/j.cma.2015.08.001 . es_ES
dc.description.references Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ. A modified perturbed Lagrangian formulation for contact problems. Comput Mech. 2015;55(4):737–54. https://doi.org/10.1007/s00466-015-1133-6 . es_ES
dc.description.references Heintz P, Hansbo P. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng. 2006;195(33–36):4323–33. https://doi.org/10.1016/j.cma.2005.09.008 . es_ES
dc.description.references Annavarapu C, Hautefeuille M, Dolbow JE. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng. 2014;268:417–36. https://doi.org/10.1016/j.cma.2013.09.002 . es_ES
dc.description.references Poulios K, Renard Y. An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct. 2015;153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027 . es_ES
dc.description.references Mlika R, Renard Y, Chouly F. An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput Methods Appl Mech Eng. 2017;325:265–88. https://doi.org/10.1016/J.CMA.2017.07.015 . es_ES
dc.description.references Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng. 1992;33:1331–64. https://doi.org/10.1002/nme.1620330702 . es_ES
dc.description.references Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A. Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng. 2007;70:705–27. https://doi.org/10.1002/nme.1903 . es_ES
dc.description.references González-Estrada OA, Ródenas JJ, Bordas SPA, Nadal E, Kerfriden P, Fuenmayor FJ. Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Comput Struct. 2015;152:1–10. https://doi.org/10.1016/j.compstruc.2015.01.015 . es_ES
dc.description.references Wriggers P, Krstulovic-Opara L, Korelc J. Smooth c1-interpolations for two-dimensional frictional contact problems. Int J Numer Methods Eng. 2001;51(12):1469–95. https://doi.org/10.1002/nme.227 . es_ES
dc.description.references Padmanabhan V, Laursen TA. A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem Anal Design. 2001;37(3):173–98. https://doi.org/10.1016/S0168-874X(00)00029-9 . es_ES
dc.description.references Tur M, Giner E, Fuenmayor FJ, Wriggers P. 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng. 2012;247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002 . es_ES
dc.description.references Stadler M, Holzapfel GA, Korelc J. Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng. 2003;57(15):2177–203. https://doi.org/10.1002/nme.776 . es_ES
dc.description.references Puso MA, Laursen TA. A 3d contact smoothing method using gregory patches. Int J Numer Methods Eng. 2002;54(8):1161–94. https://doi.org/10.1002/nme.466 . es_ES
dc.description.references Neto DM, Oliveira MC, Menezes LF, Alves JL. A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng. 2016;299:283–315. https://doi.org/10.1016/j.cma.2015.11.011 . es_ES
dc.description.references Hughes TJR, Cottrell Ja, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194(39–41):4135–95. https://doi.org/10.1016/j.cma.2004.10.008 . es_ES
dc.description.references De Lorenzis L, Wriggers P, Hughes TJR. Isogeometric contact: a review. GAMM-Mitteilungen. 2014;37(1):85–123. https://doi.org/10.1002/gamm.201410005 . es_ES
dc.description.references Dittmann M, Franke M, Temizer I, Hesch C. Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng. 2014;274:192–212. https://doi.org/10.1016/j.cma.2014.02.012 . es_ES
dc.description.references Corbett CJ, Sauer RA. NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng. 2014;275:55–75. https://doi.org/10.1016/J.CMA.2014.02.019 . es_ES
dc.description.references Corbett CJ, Sauer RA. Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng. 2015;284:781–806. https://doi.org/10.1016/j.cma.2014.10.025 . es_ES
dc.description.references Navarro-Jiménez JM, Tur M, Albelda J, Ródenas JJ. Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics. 2018; 1–18. https://doi.org/10.1007/s00466-017-1533-x . es_ES
dc.description.references Lorensen WE, Cline HE, Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques—SIGGRAPH ’87, vol. 21. 1987. p. 163–169. New York: ACM Press. https://doi.org/10.1145/37401.37422 . http://portal.acm.org/citation.cfm?doid=37401.37422 . es_ES
dc.description.references Sevilla R, Fernández-Méndez S, Huerta A. NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng. 2008;76:56–83. https://doi.org/10.1002/nme.2311 . es_ES
dc.description.references Hüeber S, Mair M, Wohlmuth BI. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl Numer Math. 2005;54(3–4):555–76. https://doi.org/10.1016/J.APNUM.2004.09.019 . es_ES
dc.description.references Tur M, Fuenmayor FJ, Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng. 2009;198(37–40):2860–73. https://doi.org/10.1016/j.cma.2009.04.007 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem