- -

Numerical analysis a guide to improve the efficiency of experimentally designed solar cell

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Numerical analysis a guide to improve the efficiency of experimentally designed solar cell

Show full item record

Baig, F.; Khattak, YH.; Ullah, S.; Marí, B.; Ullah, H. (2018). Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Applied Physics A. 124(7). https://doi.org/10.1007/s00339-018-1877-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122875

Files in this item

Item Metadata

Title: Numerical analysis a guide to improve the efficiency of experimentally designed solar cell
Author: Baig, Faisal Khattak, Yousaf Hameed Ullah, Shafi Marí, B. Ullah, Hanif
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] In this paper a numerical modelling guide is proposed about how to improve the efficiency of experimentally designed solar cells with the aid of numerical analysis. To validate the study presented in this paper, we ...[+]
Copyrigths: Cerrado
Source:
Applied Physics A. (issn: 0947-8396 )
DOI: 10.1007/s00339-018-1877-x
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00339-018-1877-x
Project ID:
MINECO/ENE2016-77798-C4-2-R
GV/PROMETEO/2014/044
Thanks:
This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).
Type: Artículo

References

M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017)

L. Vinet, A. Zhedanov, A ‘missing’ family of classical orthogonal polynomials. Science (80-.), 348(6240), 1234–1237 (2010)

J. You et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016) [+]
M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017)

L. Vinet, A. Zhedanov, A ‘missing’ family of classical orthogonal polynomials. Science (80-.), 348(6240), 1234–1237 (2010)

J. You et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016)

C. Yan et al., Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett. 2(4), 930–936 (2017)

T. Minemoto, S. Harada, H. Takakura, SnS thin film solar cells with Zn1−xMgxO buffer layers. Curr. Appl. Phys. 12(1), 171–173 (2012)

H. Fu, Environment-friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. J. Mater. Chem. C. 6(3), 414–445 (2017)

A. Zakutayev, V. Stevanovic, S. Lany, Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106(12), 123903 (Mar. 2015)

M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016)

V.R. Minnam Reddy, S. Gedi, C. Park, M. R.w, and R.R. Ramakrishna, Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 15(5), 588–598 (2015)

J.A. Andrade-Arvizu, M. Courel-Piedrahita, O. Vigil-Galán, SnS-based thin film solar cells: perspectives over the last 25 years. J. Mater. Sci. Mater. Electron. 26(7), 4541–4556 (2015)

P. Sinsermsuksakul et al., Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4(15), 1–7 (2014)

W. Albers, C. Haas, F. Van Der Maesen, The preparation and the optical properties of electrical and SnS crystals. J. Phys. Chem. Solids 15(3–4), 306–310 (1960)

M.M. Nassary, Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 398(1–2), 21–25 (2005)

P.K. Nair, A.R. Garcia-Angelmo, M.T.S. Nair, Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells. Phys. Status Solidi Appl. Mater. Sci. 213(1), 170–177 (2016)

A. Niemegeers, M. Burgelman, Modelling of AC-characteristics solar cells. In 1996 22nd IEEE Photovoltaics Specialists Conference, pp. 901–904, April 1996

M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik (Stuttg) 164, 547–555 (2018)

Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 10(3), 33501 (2018)

H. Ullah, B. Marí, Numerical analysis of SnS based polycrystalline solar cells. Superlattices Microstruct. 72, 148–155 (2014)

S. Lin et al., Numerical analysis of SnS homojunction solar cell. Superlattices Microstruct. 91, 375–382 (2016)

J. Xu, Y. Yang, Study on the performances of SnS heterojunctions by numerical analysis. Energy Convers. Manag. 78, 260–265 (2014)

F. Baig, H. Ullah, Y.H. Khattak, B. Mari Soucase, Numerical analysis of SnS photovoltaic cells. In: Proceedings of 2016 International Renewable and Sustainable Energy Conference IRSEC 2016, pp. 596–600, 2017

R. Chakraborty, V. Steinmann, N.M. Mangan, R.E. Brandt, J.R. Poindexter, R. Jaramillo, J.P. Mailoa, K. Hartman, A. Polizzotti, C. Yang, R.G. Gordon, T. Buonassisi, Non-monotonic effect of growth temperature on carrier collection in SnS solar cells. Appl. Phys. Lett. 106, 203901 (2015)

K.T. Ramakrishna Reddy, P.A. Nwofe, R.W. Miles, Determination of the minority carrier diffusion length of SnS using electro-optical measurements. Electron. Mater. Lett. 9(3), 363–366 (2013)

T.H. Sajeesh, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, Unveiling the defect levels in SnS thin films for photovoltaic applications using photoluminescence technique. Phys. Status Solidi Appl. Mater. Sci. 207(8), 1934–1939 (2010)

P.A. Nwofe, R.W. Miles, K.T. Ramakrishna Reddy, Effects of sulphur and air annealing on the properties of thermally evaporated SnS layers for application in thin film solar cell devices. J. Renew. Sustain. Energy. 5, 011204 (2013)

K.T. Ramakrishna Reddy, N. Koteswara, R.W. Reddy, Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90(18–19), 3041–3046 (2006)

A. Polizzotti et al., Improving the carrier lifetime of tin sulfide via prediction and mitigation of harmful point defects. J. Phys. Chem. Lett. 8(15), 3661–3667 (2017)

Y.H. Khattak et al., Effect of CZTSe BSF and minority carrier life time on the effeciency enhancement of CZTS kesterite solar cell. Curr. Appl. Phys. 18(6), 633–641 (2018)

A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M.T.S. Nair, P.K. Nair, Thin film solar cell of SnS absorber with cubic crystalline structure. Phys. Status Solidi Appl. Mater. Sci. 212(10), 2332–2340 (2015)

[-]

This item appears in the following Collection(s)

Show full item record