- -

Numerical analysis a guide to improve the efficiency of experimentally designed solar cell

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical analysis a guide to improve the efficiency of experimentally designed solar cell

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baig, Faisal es_ES
dc.contributor.author Khattak, Yousaf Hameed es_ES
dc.contributor.author Ullah, Shafi es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Ullah, Hanif es_ES
dc.date.accessioned 2019-06-28T20:04:15Z
dc.date.available 2019-06-28T20:04:15Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0947-8396 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122875
dc.description.abstract [EN] In this paper a numerical modelling guide is proposed about how to improve the efficiency of experimentally designed solar cells with the aid of numerical analysis. To validate the study presented in this paper, we first reproduce the results for experimentally designed solar cell in SCAPS with solar cell structure p-SnS/n-CdS having a conversion efficiency of 1.5%. After this device performance was optimized in solar cell capacitance simulator (SCAPS) by changing absorber layer thickness, buffer layer thickness, minority carrier lifetime, absorber acceptor doping concentration, buffer donor doping concentration and adding window layer. After optimization of physical device parameters and structure the new solar cell structure p-SnS/n-CdS/n-ZnO achieves power conversion efficiency (PCE) of 14.01% in SCAPS. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Applied Physics A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Numerical analysis a guide to improve the efficiency of experimentally designed solar cell es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00339-018-1877-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2014%2F044/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Baig, F.; Khattak, YH.; Ullah, S.; Marí, B.; Ullah, H. (2018). Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Applied Physics A. 124(7). https://doi.org/10.1007/s00339-018-1877-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00339-018-1877-x es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 124 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\363550 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017) es_ES
dc.description.references L. Vinet, A. Zhedanov, A ‘missing’ family of classical orthogonal polynomials. Science (80-.), 348(6240), 1234–1237 (2010) es_ES
dc.description.references J. You et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016) es_ES
dc.description.references C. Yan et al., Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett. 2(4), 930–936 (2017) es_ES
dc.description.references T. Minemoto, S. Harada, H. Takakura, SnS thin film solar cells with Zn1−xMgxO buffer layers. Curr. Appl. Phys. 12(1), 171–173 (2012) es_ES
dc.description.references H. Fu, Environment-friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. J. Mater. Chem. C. 6(3), 414–445 (2017) es_ES
dc.description.references A. Zakutayev, V. Stevanovic, S. Lany, Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106(12), 123903 (Mar. 2015) es_ES
dc.description.references M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016) es_ES
dc.description.references V.R. Minnam Reddy, S. Gedi, C. Park, M. R.w, and R.R. Ramakrishna, Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 15(5), 588–598 (2015) es_ES
dc.description.references J.A. Andrade-Arvizu, M. Courel-Piedrahita, O. Vigil-Galán, SnS-based thin film solar cells: perspectives over the last 25 years. J. Mater. Sci. Mater. Electron. 26(7), 4541–4556 (2015) es_ES
dc.description.references P. Sinsermsuksakul et al., Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4(15), 1–7 (2014) es_ES
dc.description.references W. Albers, C. Haas, F. Van Der Maesen, The preparation and the optical properties of electrical and SnS crystals. J. Phys. Chem. Solids 15(3–4), 306–310 (1960) es_ES
dc.description.references M.M. Nassary, Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 398(1–2), 21–25 (2005) es_ES
dc.description.references P.K. Nair, A.R. Garcia-Angelmo, M.T.S. Nair, Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells. Phys. Status Solidi Appl. Mater. Sci. 213(1), 170–177 (2016) es_ES
dc.description.references A. Niemegeers, M. Burgelman, Modelling of AC-characteristics solar cells. In 1996 22nd IEEE Photovoltaics Specialists Conference, pp. 901–904, April 1996 es_ES
dc.description.references M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000) es_ES
dc.description.references Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik (Stuttg) 164, 547–555 (2018) es_ES
dc.description.references Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 10(3), 33501 (2018) es_ES
dc.description.references H. Ullah, B. Marí, Numerical analysis of SnS based polycrystalline solar cells. Superlattices Microstruct. 72, 148–155 (2014) es_ES
dc.description.references S. Lin et al., Numerical analysis of SnS homojunction solar cell. Superlattices Microstruct. 91, 375–382 (2016) es_ES
dc.description.references J. Xu, Y. Yang, Study on the performances of SnS heterojunctions by numerical analysis. Energy Convers. Manag. 78, 260–265 (2014) es_ES
dc.description.references F. Baig, H. Ullah, Y.H. Khattak, B. Mari Soucase, Numerical analysis of SnS photovoltaic cells. In: Proceedings of 2016 International Renewable and Sustainable Energy Conference IRSEC 2016, pp. 596–600, 2017 es_ES
dc.description.references R. Chakraborty, V. Steinmann, N.M. Mangan, R.E. Brandt, J.R. Poindexter, R. Jaramillo, J.P. Mailoa, K. Hartman, A. Polizzotti, C. Yang, R.G. Gordon, T. Buonassisi, Non-monotonic effect of growth temperature on carrier collection in SnS solar cells. Appl. Phys. Lett. 106, 203901 (2015) es_ES
dc.description.references K.T. Ramakrishna Reddy, P.A. Nwofe, R.W. Miles, Determination of the minority carrier diffusion length of SnS using electro-optical measurements. Electron. Mater. Lett. 9(3), 363–366 (2013) es_ES
dc.description.references T.H. Sajeesh, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, Unveiling the defect levels in SnS thin films for photovoltaic applications using photoluminescence technique. Phys. Status Solidi Appl. Mater. Sci. 207(8), 1934–1939 (2010) es_ES
dc.description.references P.A. Nwofe, R.W. Miles, K.T. Ramakrishna Reddy, Effects of sulphur and air annealing on the properties of thermally evaporated SnS layers for application in thin film solar cell devices. J. Renew. Sustain. Energy. 5, 011204 (2013) es_ES
dc.description.references K.T. Ramakrishna Reddy, N. Koteswara, R.W. Reddy, Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90(18–19), 3041–3046 (2006) es_ES
dc.description.references A. Polizzotti et al., Improving the carrier lifetime of tin sulfide via prediction and mitigation of harmful point defects. J. Phys. Chem. Lett. 8(15), 3661–3667 (2017) es_ES
dc.description.references Y.H. Khattak et al., Effect of CZTSe BSF and minority carrier life time on the effeciency enhancement of CZTS kesterite solar cell. Curr. Appl. Phys. 18(6), 633–641 (2018) es_ES
dc.description.references A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M.T.S. Nair, P.K. Nair, Thin film solar cell of SnS absorber with cubic crystalline structure. Phys. Status Solidi Appl. Mater. Sci. 212(10), 2332–2340 (2015) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem