- -

Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

Show full item record

García-Fayos, J.; Lobera González, MP.; Balaguer Ramirez, M.; Serra Alfaro, JM. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials. 5. https://doi.org/10.3389/fmats.2018.00031

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122899

Files in this item

Item Metadata

Title: Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors
Author: García-Fayos, Julio Lobera González, Maria Pilar Balaguer Ramirez, Maria Serra Alfaro, José Manuel
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Increased availability of methane from shale gas and stranded gas deposits in the recent years may facilitate the production of ethylene by means of potentially more competitive routes than the state-of-the-art steam ...[+]
Subjects: Catalytic membrane reactor , Oxygen transport membrane , BSCF , OCM , Ethylene production , Ionic conductor
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Materials. (eissn: 2296-8016 )
DOI: 10.3389/fmats.2018.00031
Publisher:
Frontiers Media SA
Publisher version: http://doi.org/10.3389/fmats.2018.00031
Project ID:
info:eu-repo/grantAgreement/EC/FP7/608524/EU
MINECO/ENE2014-57651-R
MINECO/SEV-2012-0267
Thanks:
Financial support by the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) and by the EU through FP7 GREEN-CC Project (GA 608524), is gratefully acknowledged. The authors want also acknowledge the Electron ...[+]
Type: Artículo

References

Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019

Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351

Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434k [+]
Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019

Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351

Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434k

Aseem, A., & Harold, M. P. (2018). C 2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. Chemical Engineering Science, 175, 199-207. doi:10.1016/j.ces.2017.09.035

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Bhasin, M. ., McCain, J. ., Vora, B. ., Imai, T., & Pujadó, P. . (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1-2), 397-419. doi:10.1016/s0926-860x(01)00816-x

Bhatia, S., Thien, C. Y., & Mohamed, A. R. (2009). Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chemical Engineering Journal, 148(2-3), 525-532. doi:10.1016/j.cej.2009.01.008

Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178

Czuprat, O., Schiestel, T., Voss, H., & Caro, J. (2010). Oxidative Coupling of Methane in a BCFZ Perovskite Hollow Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 49(21), 10230-10236. doi:10.1021/ie100282g

Erskine, K. M., Meier, A. M., & Pilgrim, S. M. (2002). Journal of Materials Science, 37(8), 1705-1709. doi:10.1023/a:1014912923977

Farrell, B. L., Igenegbai, V. O., & Linic, S. (2016). A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. ACS Catalysis, 6(7), 4340-4346. doi:10.1021/acscatal.6b01087

Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P., & Parton, R. (2003). Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. Catalysis Today, 81(3), 337-345. doi:10.1016/s0920-5861(03)00132-9

Hutchings, G. J., Scurrell, M. S., & Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. Chemical Society Reviews, 18, 251. doi:10.1039/cs9891800251

Ito, T., & Lunsford, J. H. (1985). Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature, 314(6013), 721-722. doi:10.1038/314721b0

Karakaya, C., Zhu, H., Zohour, B., Senkan, S., & Kee, R. J. (2017). Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La2 O3 /CeO2 Nanofiber Fabric Catalysts. ChemCatChem, 9(24), 4538-4551. doi:10.1002/cctc.201701172

Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29(1-2), 49-66. doi:10.1016/s1387-1811(98)00320-5

KELLER, G. (1982). Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. Journal of Catalysis, 73(1), 9-19. doi:10.1016/0021-9517(82)90075-6

Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212

Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530

Lobera, M. P., Escolástico, S., Garcia-Fayos, J., & Serra, J. M. (2012). Ethylene Production by ODHE in Catalytically Modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane Reactors. ChemSusChem, 5(8), 1587-1596. doi:10.1002/cssc.201100747

Lobera, M. P., Escolástico, S., & Serra, J. M. (2011). High Ethylene Production through Oxidative Dehydrogenation of Ethane Membrane Reactors Based on Fast Oxygen-Ion Conductors. ChemCatChem, 3(9), 1503-1508. doi:10.1002/cctc.201100055

Lunsford, J. H. (1995). The Catalytic Oxidative Coupling of Methane. Angewandte Chemie International Edition in English, 34(9), 970-980. doi:10.1002/anie.199509701

Lunsford, J. H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catalysis Today, 63(2-4), 165-174. doi:10.1016/s0920-5861(00)00456-9

Maitra, A. M. (1993). Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 104(1), 11-59. doi:10.1016/0926-860x(93)80209-9

Mleczko, L., & Baerns, M. (1995). Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Processing Technology, 42(2-3), 217-248. doi:10.1016/0378-3820(94)00121-9

Mleczko, L., Pannek, U., Niemi, V. M., & Hiltunen, J. (1996). Oxidative Coupling of Methane in a Fluidized-Bed Reactor over a Highly Active and Selective Catalyst. Industrial & Engineering Chemistry Research, 35(1), 54-61. doi:10.1021/ie950145s

Olivier, L., Haag, S., Mirodatos, C., & van Veen, A. C. (2009). Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catalysis Today, 142(1-2), 34-41. doi:10.1016/j.cattod.2009.01.009

Othman, N. H., Wu, Z., & Li, K. (2015). An oxygen permeable membrane microreactor with an in-situ deposited Bi 1.5 Y 0.3 Sm 0.2 O 3−δ catalyst for oxidative coupling of methane. Journal of Membrane Science, 488, 182-193. doi:10.1016/j.memsci.2015.04.027

OTSUKA, K. (1986). Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. Journal of Catalysis, 100(2), 353-359. doi:10.1016/0021-9517(86)90102-8

Pak, S., Qiu, P., & Lunsford, J. H. (1998). Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO Catalysts. Journal of Catalysis, 179(1), 222-230. doi:10.1006/jcat.1998.2228

PALERMO, A., HOLGADOVAZQUEZ, J., LEE, A., TIKHOV, M., & LAMBERT, R. (1998). Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. Journal of Catalysis, 177(2), 259-266. doi:10.1006/jcat.1998.2109

ReportersP. The Ethylene Technology Report 20162016

Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., & Kriegel, R. (2012). Oxygen permeation of various archetypes of oxygen membranes based on BSCF. AIChE Journal, 58(10), 3195-3202. doi:10.1002/aic.13843

Spallina, V., Velarde, I. C., Jimenez, J. A. M., Godini, H. R., Gallucci, F., & Van Sint Annaland, M. (2017). Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Conversion and Management, 154, 244-261. doi:10.1016/j.enconman.2017.10.061

Stansch, Z., Mleczko, L., & Baerns, M. (1997). Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst. Industrial & Engineering Chemistry Research, 36(7), 2568-2579. doi:10.1021/ie960562k

Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074

Tan, X., & Li, K. (2006). Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 45(1), 142-149. doi:10.1021/ie0506320

TAN, X., PANG, Z., GU, Z., & LIU, S. (2007). Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. Journal of Membrane Science, 302(1-2), 109-114. doi:10.1016/j.memsci.2007.06.033

Ten Elshof, J. E., Bouwmeester, H. J. M., & Verweij, H. (1995). Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Applied Catalysis A: General, 130(2), 195-212. doi:10.1016/0926-860x(95)00098-4

Thaler, F., Müller, M., & Spatschek, R. (2016). Oxygen permeation through perovskitic membranes: The influence of steam in the sweep on the permeation performance. AIMS Materials Science, 3(3), 1126-1137. doi:10.3934/matersci.2016.3.1126

Wang, D. J., Rosynek, M. P., & Lunsford, J. H. (1995). Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts. Journal of Catalysis, 155(2), 390-402. doi:10.1006/jcat.1995.1221

Wang, H., Cong, Y., & Yang, W. (2005). Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catalysis Today, 104(2-4), 160-167. doi:10.1016/j.cattod.2005.03.079

Xu, S. J., & Thomson, W. J. (1997). Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE Journal, 43(S11), 2731-2740. doi:10.1002/aic.690431319

Zeng, Y., & Lin, Y. S. (2001). Oxidative coupling of methane on improved bismuth oxide membrane reactors. AIChE Journal, 47(2), 436-444. doi:10.1002/aic.690470220

Zeng, Y., Lin, Y. S., & Swartz, S. L. (1998). Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 150(1), 87-98. doi:10.1016/s0376-7388(98)00182-3

Zhou, W., Ran, R., Shao, Z., Zhuang, W., Jia, J., Gu, H., … Xu, N. (2008). Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 56(12), 2687-2698. doi:10.1016/j.actamat.2008.02.002

[-]

This item appears in the following Collection(s)

Show full item record