Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019
Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351
Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434k
[+]
Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019
Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351
Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434k
Aseem, A., & Harold, M. P. (2018). C 2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. Chemical Engineering Science, 175, 199-207. doi:10.1016/j.ces.2017.09.035
Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w
Bhasin, M. ., McCain, J. ., Vora, B. ., Imai, T., & Pujadó, P. . (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1-2), 397-419. doi:10.1016/s0926-860x(01)00816-x
Bhatia, S., Thien, C. Y., & Mohamed, A. R. (2009). Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chemical Engineering Journal, 148(2-3), 525-532. doi:10.1016/j.cej.2009.01.008
Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178
Czuprat, O., Schiestel, T., Voss, H., & Caro, J. (2010). Oxidative Coupling of Methane in a BCFZ Perovskite Hollow Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 49(21), 10230-10236. doi:10.1021/ie100282g
Erskine, K. M., Meier, A. M., & Pilgrim, S. M. (2002). Journal of Materials Science, 37(8), 1705-1709. doi:10.1023/a:1014912923977
Farrell, B. L., Igenegbai, V. O., & Linic, S. (2016). A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. ACS Catalysis, 6(7), 4340-4346. doi:10.1021/acscatal.6b01087
Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P., & Parton, R. (2003). Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. Catalysis Today, 81(3), 337-345. doi:10.1016/s0920-5861(03)00132-9
Hutchings, G. J., Scurrell, M. S., & Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. Chemical Society Reviews, 18, 251. doi:10.1039/cs9891800251
Ito, T., & Lunsford, J. H. (1985). Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature, 314(6013), 721-722. doi:10.1038/314721b0
Karakaya, C., Zhu, H., Zohour, B., Senkan, S., & Kee, R. J. (2017). Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La2
O3
/CeO2
Nanofiber Fabric Catalysts. ChemCatChem, 9(24), 4538-4551. doi:10.1002/cctc.201701172
Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29(1-2), 49-66. doi:10.1016/s1387-1811(98)00320-5
KELLER, G. (1982). Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. Journal of Catalysis, 73(1), 9-19. doi:10.1016/0021-9517(82)90075-6
Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212
Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530
Lobera, M. P., Escolástico, S., Garcia-Fayos, J., & Serra, J. M. (2012). Ethylene Production by ODHE in Catalytically Modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane Reactors. ChemSusChem, 5(8), 1587-1596. doi:10.1002/cssc.201100747
Lobera, M. P., Escolástico, S., & Serra, J. M. (2011). High Ethylene Production through Oxidative Dehydrogenation of Ethane Membrane Reactors Based on Fast Oxygen-Ion Conductors. ChemCatChem, 3(9), 1503-1508. doi:10.1002/cctc.201100055
Lunsford, J. H. (1995). The Catalytic Oxidative Coupling of Methane. Angewandte Chemie International Edition in English, 34(9), 970-980. doi:10.1002/anie.199509701
Lunsford, J. H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catalysis Today, 63(2-4), 165-174. doi:10.1016/s0920-5861(00)00456-9
Maitra, A. M. (1993). Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 104(1), 11-59. doi:10.1016/0926-860x(93)80209-9
Mleczko, L., & Baerns, M. (1995). Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Processing Technology, 42(2-3), 217-248. doi:10.1016/0378-3820(94)00121-9
Mleczko, L., Pannek, U., Niemi, V. M., & Hiltunen, J. (1996). Oxidative Coupling of Methane in a Fluidized-Bed Reactor over a Highly Active and Selective Catalyst. Industrial & Engineering Chemistry Research, 35(1), 54-61. doi:10.1021/ie950145s
Olivier, L., Haag, S., Mirodatos, C., & van Veen, A. C. (2009). Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catalysis Today, 142(1-2), 34-41. doi:10.1016/j.cattod.2009.01.009
Othman, N. H., Wu, Z., & Li, K. (2015). An oxygen permeable membrane microreactor with an in-situ deposited Bi 1.5 Y 0.3 Sm 0.2 O 3−δ catalyst for oxidative coupling of methane. Journal of Membrane Science, 488, 182-193. doi:10.1016/j.memsci.2015.04.027
OTSUKA, K. (1986). Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. Journal of Catalysis, 100(2), 353-359. doi:10.1016/0021-9517(86)90102-8
Pak, S., Qiu, P., & Lunsford, J. H. (1998). Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO Catalysts. Journal of Catalysis, 179(1), 222-230. doi:10.1006/jcat.1998.2228
PALERMO, A., HOLGADOVAZQUEZ, J., LEE, A., TIKHOV, M., & LAMBERT, R. (1998). Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. Journal of Catalysis, 177(2), 259-266. doi:10.1006/jcat.1998.2109
ReportersP. The Ethylene Technology Report 20162016
Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., & Kriegel, R. (2012). Oxygen permeation of various archetypes of oxygen membranes based on BSCF. AIChE Journal, 58(10), 3195-3202. doi:10.1002/aic.13843
Spallina, V., Velarde, I. C., Jimenez, J. A. M., Godini, H. R., Gallucci, F., & Van Sint Annaland, M. (2017). Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Conversion and Management, 154, 244-261. doi:10.1016/j.enconman.2017.10.061
Stansch, Z., Mleczko, L., & Baerns, M. (1997). Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst. Industrial & Engineering Chemistry Research, 36(7), 2568-2579. doi:10.1021/ie960562k
Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074
Tan, X., & Li, K. (2006). Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 45(1), 142-149. doi:10.1021/ie0506320
TAN, X., PANG, Z., GU, Z., & LIU, S. (2007). Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. Journal of Membrane Science, 302(1-2), 109-114. doi:10.1016/j.memsci.2007.06.033
Ten Elshof, J. E., Bouwmeester, H. J. M., & Verweij, H. (1995). Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Applied Catalysis A: General, 130(2), 195-212. doi:10.1016/0926-860x(95)00098-4
Thaler, F., Müller, M., & Spatschek, R. (2016). Oxygen permeation through perovskitic membranes: The influence of steam in the sweep on the permeation performance. AIMS Materials Science, 3(3), 1126-1137. doi:10.3934/matersci.2016.3.1126
Wang, D. J., Rosynek, M. P., & Lunsford, J. H. (1995). Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts. Journal of Catalysis, 155(2), 390-402. doi:10.1006/jcat.1995.1221
Wang, H., Cong, Y., & Yang, W. (2005). Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catalysis Today, 104(2-4), 160-167. doi:10.1016/j.cattod.2005.03.079
Xu, S. J., & Thomson, W. J. (1997). Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE Journal, 43(S11), 2731-2740. doi:10.1002/aic.690431319
Zeng, Y., & Lin, Y. S. (2001). Oxidative coupling of methane on improved bismuth oxide membrane reactors. AIChE Journal, 47(2), 436-444. doi:10.1002/aic.690470220
Zeng, Y., Lin, Y. S., & Swartz, S. L. (1998). Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 150(1), 87-98. doi:10.1016/s0376-7388(98)00182-3
Zhou, W., Ran, R., Shao, Z., Zhuang, W., Jia, J., Gu, H., … Xu, N. (2008). Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 56(12), 2687-2698. doi:10.1016/j.actamat.2008.02.002
[-]