- -

Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fayos, Julio es_ES
dc.contributor.author Lobera González, Maria Pilar es_ES
dc.contributor.author Balaguer Ramirez, Maria es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2019-06-29T20:01:40Z
dc.date.available 2019-06-29T20:01:40Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122899
dc.description.abstract [EN] Increased availability of methane from shale gas and stranded gas deposits in the recent years may facilitate the production of ethylene by means of potentially more competitive routes than the state-of-the-art steam cracking processes. One appealing route is the oxidative coupling of methane (OCM), which is considered in this work for the production of ethylene by means of the use of catalytic membrane reactors (CMR) based on Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) ceramic material. In a first approach, a screening of 15 formulations as catalysts for the ethylene-ethane production was conducted on CMR consisting of disk-shaped planar BSCF membranes. At 900 degrees C, the maximum C-2 selectivity was 70%, reached with Ba0.5Sr0.5FeO3-delta and La0.5Ce0.1Sr0.4Co0.8Fe0.2O3-delta catalysts. On the other hand, low CH4 conversions (X-CH4) resulted in C-2 yields below 3%. Operation at 1,000 degrees C significantly shifted X-CH4 for all the activated membranes due to the decrease in CH4/O-2 ratios, thus obtaining C-2 yields close to 9% and productivities of ca. 1.2ml.min(-1).cm(-2) with Ce0.9Gd0.1O2-delta and Ba0.5Sr0.5Co0.8Fe0.2O3-delta impregnated with Mn-Na2WO4 catalysts. The performance of OCM reaction was also studied in a tubular catalytic membrane reactor. Tubular configuration improved C-2 yield by minimizing CH4/O-2 ratios up to 1.7, obtaining a maximum of 15.6% at 900 degrees C with a BSCF capillary membrane activated with a packed bed of 2 wt% Mn/5 wt% Na2WO4 on SiO2 catalyst. es_ES
dc.description.sponsorship Financial support by the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) and by the EU through FP7 GREEN-CC Project (GA 608524), is gratefully acknowledged. The authors want also acknowledge the Electron Microscopy Service from the Universitat Politecnica de Valencia for their support in the SEM analysis performed in this work. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Catalytic membrane reactor es_ES
dc.subject Oxygen transport membrane es_ES
dc.subject BSCF es_ES
dc.subject OCM es_ES
dc.subject Ethylene production es_ES
dc.subject Ionic conductor es_ES
dc.title Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmats.2018.00031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/608524/EU/Graded Membranes for Energy Efficient New Generation Carbon Capture Process/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation García-Fayos, J.; Lobera González, MP.; Balaguer Ramirez, M.; Serra Alfaro, JM. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials. 5. https://doi.org/10.3389/fmats.2018.00031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3389/fmats.2018.00031 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.identifier.eissn 2296-8016 es_ES
dc.relation.pasarela S\371793 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019 es_ES
dc.description.references Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351 es_ES
dc.description.references Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434k es_ES
dc.description.references Aseem, A., & Harold, M. P. (2018). C 2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. Chemical Engineering Science, 175, 199-207. doi:10.1016/j.ces.2017.09.035 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Bhasin, M. ., McCain, J. ., Vora, B. ., Imai, T., & Pujadó, P. . (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1-2), 397-419. doi:10.1016/s0926-860x(01)00816-x es_ES
dc.description.references Bhatia, S., Thien, C. Y., & Mohamed, A. R. (2009). Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chemical Engineering Journal, 148(2-3), 525-532. doi:10.1016/j.cej.2009.01.008 es_ES
dc.description.references Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178 es_ES
dc.description.references Czuprat, O., Schiestel, T., Voss, H., & Caro, J. (2010). Oxidative Coupling of Methane in a BCFZ Perovskite Hollow Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 49(21), 10230-10236. doi:10.1021/ie100282g es_ES
dc.description.references Erskine, K. M., Meier, A. M., & Pilgrim, S. M. (2002). Journal of Materials Science, 37(8), 1705-1709. doi:10.1023/a:1014912923977 es_ES
dc.description.references Farrell, B. L., Igenegbai, V. O., & Linic, S. (2016). A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. ACS Catalysis, 6(7), 4340-4346. doi:10.1021/acscatal.6b01087 es_ES
dc.description.references Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P., & Parton, R. (2003). Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. Catalysis Today, 81(3), 337-345. doi:10.1016/s0920-5861(03)00132-9 es_ES
dc.description.references Hutchings, G. J., Scurrell, M. S., & Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. Chemical Society Reviews, 18, 251. doi:10.1039/cs9891800251 es_ES
dc.description.references Ito, T., & Lunsford, J. H. (1985). Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature, 314(6013), 721-722. doi:10.1038/314721b0 es_ES
dc.description.references Karakaya, C., Zhu, H., Zohour, B., Senkan, S., & Kee, R. J. (2017). Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La2 O3 /CeO2 Nanofiber Fabric Catalysts. ChemCatChem, 9(24), 4538-4551. doi:10.1002/cctc.201701172 es_ES
dc.description.references Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29(1-2), 49-66. doi:10.1016/s1387-1811(98)00320-5 es_ES
dc.description.references KELLER, G. (1982). Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. Journal of Catalysis, 73(1), 9-19. doi:10.1016/0021-9517(82)90075-6 es_ES
dc.description.references Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212 es_ES
dc.description.references Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530 es_ES
dc.description.references Lobera, M. P., Escolástico, S., Garcia-Fayos, J., & Serra, J. M. (2012). Ethylene Production by ODHE in Catalytically Modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane Reactors. ChemSusChem, 5(8), 1587-1596. doi:10.1002/cssc.201100747 es_ES
dc.description.references Lobera, M. P., Escolástico, S., & Serra, J. M. (2011). High Ethylene Production through Oxidative Dehydrogenation of Ethane Membrane Reactors Based on Fast Oxygen-Ion Conductors. ChemCatChem, 3(9), 1503-1508. doi:10.1002/cctc.201100055 es_ES
dc.description.references Lunsford, J. H. (1995). The Catalytic Oxidative Coupling of Methane. Angewandte Chemie International Edition in English, 34(9), 970-980. doi:10.1002/anie.199509701 es_ES
dc.description.references Lunsford, J. H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catalysis Today, 63(2-4), 165-174. doi:10.1016/s0920-5861(00)00456-9 es_ES
dc.description.references Maitra, A. M. (1993). Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 104(1), 11-59. doi:10.1016/0926-860x(93)80209-9 es_ES
dc.description.references Mleczko, L., & Baerns, M. (1995). Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Processing Technology, 42(2-3), 217-248. doi:10.1016/0378-3820(94)00121-9 es_ES
dc.description.references Mleczko, L., Pannek, U., Niemi, V. M., & Hiltunen, J. (1996). Oxidative Coupling of Methane in a Fluidized-Bed Reactor over a Highly Active and Selective Catalyst. Industrial & Engineering Chemistry Research, 35(1), 54-61. doi:10.1021/ie950145s es_ES
dc.description.references Olivier, L., Haag, S., Mirodatos, C., & van Veen, A. C. (2009). Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catalysis Today, 142(1-2), 34-41. doi:10.1016/j.cattod.2009.01.009 es_ES
dc.description.references Othman, N. H., Wu, Z., & Li, K. (2015). An oxygen permeable membrane microreactor with an in-situ deposited Bi 1.5 Y 0.3 Sm 0.2 O 3−δ catalyst for oxidative coupling of methane. Journal of Membrane Science, 488, 182-193. doi:10.1016/j.memsci.2015.04.027 es_ES
dc.description.references OTSUKA, K. (1986). Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. Journal of Catalysis, 100(2), 353-359. doi:10.1016/0021-9517(86)90102-8 es_ES
dc.description.references Pak, S., Qiu, P., & Lunsford, J. H. (1998). Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO Catalysts. Journal of Catalysis, 179(1), 222-230. doi:10.1006/jcat.1998.2228 es_ES
dc.description.references PALERMO, A., HOLGADOVAZQUEZ, J., LEE, A., TIKHOV, M., & LAMBERT, R. (1998). Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. Journal of Catalysis, 177(2), 259-266. doi:10.1006/jcat.1998.2109 es_ES
dc.description.references ReportersP. The Ethylene Technology Report 20162016 es_ES
dc.description.references Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., & Kriegel, R. (2012). Oxygen permeation of various archetypes of oxygen membranes based on BSCF. AIChE Journal, 58(10), 3195-3202. doi:10.1002/aic.13843 es_ES
dc.description.references Spallina, V., Velarde, I. C., Jimenez, J. A. M., Godini, H. R., Gallucci, F., & Van Sint Annaland, M. (2017). Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Conversion and Management, 154, 244-261. doi:10.1016/j.enconman.2017.10.061 es_ES
dc.description.references Stansch, Z., Mleczko, L., & Baerns, M. (1997). Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst. Industrial & Engineering Chemistry Research, 36(7), 2568-2579. doi:10.1021/ie960562k es_ES
dc.description.references Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074 es_ES
dc.description.references Tan, X., & Li, K. (2006). Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 45(1), 142-149. doi:10.1021/ie0506320 es_ES
dc.description.references TAN, X., PANG, Z., GU, Z., & LIU, S. (2007). Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. Journal of Membrane Science, 302(1-2), 109-114. doi:10.1016/j.memsci.2007.06.033 es_ES
dc.description.references Ten Elshof, J. E., Bouwmeester, H. J. M., & Verweij, H. (1995). Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Applied Catalysis A: General, 130(2), 195-212. doi:10.1016/0926-860x(95)00098-4 es_ES
dc.description.references Thaler, F., Müller, M., & Spatschek, R. (2016). Oxygen permeation through perovskitic membranes: The influence of steam in the sweep on the permeation performance. AIMS Materials Science, 3(3), 1126-1137. doi:10.3934/matersci.2016.3.1126 es_ES
dc.description.references Wang, D. J., Rosynek, M. P., & Lunsford, J. H. (1995). Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts. Journal of Catalysis, 155(2), 390-402. doi:10.1006/jcat.1995.1221 es_ES
dc.description.references Wang, H., Cong, Y., & Yang, W. (2005). Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catalysis Today, 104(2-4), 160-167. doi:10.1016/j.cattod.2005.03.079 es_ES
dc.description.references Xu, S. J., & Thomson, W. J. (1997). Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE Journal, 43(S11), 2731-2740. doi:10.1002/aic.690431319 es_ES
dc.description.references Zeng, Y., & Lin, Y. S. (2001). Oxidative coupling of methane on improved bismuth oxide membrane reactors. AIChE Journal, 47(2), 436-444. doi:10.1002/aic.690470220 es_ES
dc.description.references Zeng, Y., Lin, Y. S., & Swartz, S. L. (1998). Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 150(1), 87-98. doi:10.1016/s0376-7388(98)00182-3 es_ES
dc.description.references Zhou, W., Ran, R., Shao, Z., Zhuang, W., Jia, J., Gu, H., … Xu, N. (2008). Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 56(12), 2687-2698. doi:10.1016/j.actamat.2008.02.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem