Mostrar el registro sencillo del ítem
dc.contributor.author | Baselga Moreno, Sergio | es_ES |
dc.contributor.author | Martínez Llario, José Carlos | es_ES |
dc.date.accessioned | 2019-06-29T20:02:11Z | |
dc.date.available | 2019-06-29T20:02:11Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0039-3169 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/122902 | |
dc.description.abstract | [EN] The paper presents two algorithms for the computation of intersection of geodesics and minimum distance from a point to a geodesic on the ellipsoid, respectively. They are based on the iterative use of direct and inverse problems of geodesy by means of their implementations with machine-precision accuracy in GeographicLib. The algorithms yield the same results as those obtained by Karney¿s approach based on the use of auxiliary ellipsoidal gnomonic projections, with the advantage on our side that the algorithms are not limited to distances below 10000 km. This results in our algorithm being the only general solution for the problem of minimum distance from a point to a geodesic on the ellipsoid. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Studia Geophysica et Geodaetica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Geodesic line | es_ES |
dc.subject | Intersection | es_ES |
dc.subject | Ellipsoid | es_ES |
dc.subject | GeographicLib | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Intersection and point-to-line solutions for geodesics on the ellipsoid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11200-017-1020-z | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-07-31 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Baselga Moreno, S.; Martínez Llario, JC. (2018). Intersection and point-to-line solutions for geodesics on the ellipsoid. Studia Geophysica et Geodaetica. 62(3):353-363. https://doi.org/10.1007/s11200-017-1020-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11200-017-1020-z | es_ES |
dc.description.upvformatpinicio | 353 | es_ES |
dc.description.upvformatpfin | 363 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\351880 | es_ES |
dc.description.references | JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html). | es_ES |
dc.description.references | Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1). | es_ES |
dc.description.references | Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f). | es_ES |
dc.description.references | Karney C.F.F., 2013. Algorithms for geodesics. J. Geodesy, 87, 43–55. | es_ES |
dc.description.references | Karney C.F.F., 2017. GeographicLib, version 1.47. (http://geographiclib.sourceforge.net). | es_ES |
dc.description.references | Patrikalakis N.M., Maekawa T. and Cho W., 2009. Shape Interrogation for Computer Aided Design and Manufacturing. (http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/mathe.html). | es_ES |
dc.description.references | PostGIS Development Group, 2017. PostGIS 2.3.3dev Manual. (http://postgis.net/docs/index.html). | es_ES |
dc.description.references | Sjöberg L.E., 2002. Intersections on the sphere and ellipsoid. J. Geodesy, 76, 115–120. | es_ES |
dc.description.references | Sjöberg L.E., 2006. Direct and indirect geodetic problems on the ellipsoid. Z. Vermess., 131, 35–39. | es_ES |
dc.description.references | Sjöberg L.E., 2008. Geodetic intersection on the ellipsoid. J. Geodesy, 82, 565–567. | es_ES |
dc.description.references | Sjöberg L.E., 2009. New solutions to classical geodetic problems on the ellipsoid. In: Sideris M.G. (Ed.), Observing our Changing Earth. International Association of Geodesy Symposia 133, 781–784, Springer-Verlag, Berlin, Germany. | es_ES |
dc.description.references | Sjöberg L.E. and Shirazian M, 2012. Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration. J. Surv. Eng., 138, 9–16. | es_ES |
dc.description.references | Todhunter I., 1886. Spherical Trigonometry, 5th Edition. MacMillan and Co., London, U.K. (http://www.gutenberg.org/ebooks/19770). | es_ES |
dc.description.references | Vincenty T., 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 23, 88–93. | es_ES |