- -

Intersection and point-to-line solutions for geodesics on the ellipsoid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intersection and point-to-line solutions for geodesics on the ellipsoid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baselga Moreno, Sergio es_ES
dc.contributor.author Martínez Llario, José Carlos es_ES
dc.date.accessioned 2019-06-29T20:02:11Z
dc.date.available 2019-06-29T20:02:11Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0039-3169 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122902
dc.description.abstract [EN] The paper presents two algorithms for the computation of intersection of geodesics and minimum distance from a point to a geodesic on the ellipsoid, respectively. They are based on the iterative use of direct and inverse problems of geodesy by means of their implementations with machine-precision accuracy in GeographicLib. The algorithms yield the same results as those obtained by Karney¿s approach based on the use of auxiliary ellipsoidal gnomonic projections, with the advantage on our side that the algorithms are not limited to distances below 10000 km. This results in our algorithm being the only general solution for the problem of minimum distance from a point to a geodesic on the ellipsoid. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Studia Geophysica et Geodaetica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Geodesic line es_ES
dc.subject Intersection es_ES
dc.subject Ellipsoid es_ES
dc.subject GeographicLib es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Intersection and point-to-line solutions for geodesics on the ellipsoid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11200-017-1020-z es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-07-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Baselga Moreno, S.; Martínez Llario, JC. (2018). Intersection and point-to-line solutions for geodesics on the ellipsoid. Studia Geophysica et Geodaetica. 62(3):353-363. https://doi.org/10.1007/s11200-017-1020-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11200-017-1020-z es_ES
dc.description.upvformatpinicio 353 es_ES
dc.description.upvformatpfin 363 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\351880 es_ES
dc.description.references JaVaWa, 2017. JAVAWA GPS Tools. (http://www.javawa.nl/coordcalc_en.html). es_ES
dc.description.references Karney C.F.F., 2011a. Geodesics on an Ellipsoid of Revolution. Technical Report. SRI International (http://arxiv.org/abs/1102.1215v1). es_ES
dc.description.references Karney C.F.F., 2011b. Intersection between Two Geodesic Lines. (https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f). es_ES
dc.description.references Karney C.F.F., 2013. Algorithms for geodesics. J. Geodesy, 87, 43–55. es_ES
dc.description.references Karney C.F.F., 2017. GeographicLib, version 1.47. (http://geographiclib.sourceforge.net). es_ES
dc.description.references Patrikalakis N.M., Maekawa T. and Cho W., 2009. Shape Interrogation for Computer Aided Design and Manufacturing. (http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/mathe.html). es_ES
dc.description.references PostGIS Development Group, 2017. PostGIS 2.3.3dev Manual. (http://postgis.net/docs/index.html). es_ES
dc.description.references Sjöberg L.E., 2002. Intersections on the sphere and ellipsoid. J. Geodesy, 76, 115–120. es_ES
dc.description.references Sjöberg L.E., 2006. Direct and indirect geodetic problems on the ellipsoid. Z. Vermess., 131, 35–39. es_ES
dc.description.references Sjöberg L.E., 2008. Geodetic intersection on the ellipsoid. J. Geodesy, 82, 565–567. es_ES
dc.description.references Sjöberg L.E., 2009. New solutions to classical geodetic problems on the ellipsoid. In: Sideris M.G. (Ed.), Observing our Changing Earth. International Association of Geodesy Symposia 133, 781–784, Springer-Verlag, Berlin, Germany. es_ES
dc.description.references Sjöberg L.E. and Shirazian M, 2012. Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration. J. Surv. Eng., 138, 9–16. es_ES
dc.description.references Todhunter I., 1886. Spherical Trigonometry, 5th Edition. MacMillan and Co., London, U.K. (http://www.gutenberg.org/ebooks/19770). es_ES
dc.description.references Vincenty T., 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 23, 88–93. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem